Standard Installations Indirect Design

Standard Embankment Installation

Standard Installation Soils and Minimum Compaction Requirements

Installation Type	Bedding Thickness	Haunch and Outer Bedding	Lower Side
Type 1	$D_{0} / 24$ minimum, not less than 3 " (75 mm) If rock foundation, use $\mathrm{D}_{0} / 12$ minimum, not less than 6 " $(150 \mathrm{~mm})$	95\% Category I	90\% Category I, 95\% Category II, or 100\% Category III
Type 2	$D_{0} / 24$ minimum, not less than 3 " (75 mm) If rock foundation, use $\mathrm{D}_{0} / 12$ minimum, not less than 6 " $(150 \mathrm{~mm})$	90% Category I or 95\% Category II	85\% Category I, 90\% Category II, or 95\% Category III
Type 3	$D_{0} / 24$ minimum, not less than 3 " (75 mm) If rock foundation, use $\mathrm{D}_{0} / 12$ minimum, not less than 6" (150 mm)	85\% Category I, 90\% Category II, or 95\% Category III	85\% Category I, 90\% Category II, or 95\% Category III
Type 4	No bedding required except if rock foundation, use $D_{0} / 12$ minimum, not less than $6 "(150 \mathrm{~mm})$	No compaction required, except if Category III, use 85\%	No compaction required, except if Category III, use 85\%

Representative Soil Types			Percent Compaction	
SIDD	USCS	AASHTO	Standard Proctor	Modified Proctor
Gravelly Sand (Category I)	SW, SP, GW, GP	A1, A3	$\begin{gathered} 100 \\ 95 \\ 90 \\ 85 \\ 80 \\ 61 \end{gathered}$	95 90 85 80 75 59
Sandy Silt (Category II)	GM, SM, ML, Also GC, SC with less than 20\% passing \#200 sieve	A2, A4	$\begin{aligned} & 100 \\ & 95 \\ & 90 \\ & 85 \\ & 80 \\ & 49 \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \\ & 85 \\ & 80 \\ & 75 \\ & 46 \end{aligned}$
Silty Clay (Category III)	CL, MH, GC, SC	A5, A6	$\begin{aligned} & 100 \\ & 95 \\ & 90 \\ & 85 \\ & 80 \\ & 45 \end{aligned}$	$\begin{aligned} & 90 \\ & 85 \\ & 80 \\ & 75 \\ & 70 \\ & 40 \end{aligned}$
	CH	A7	$\begin{gathered} 100 \\ 95 \\ 90 \\ 45 \end{gathered}$	$\begin{aligned} & 90 \\ & 85 \\ & 80 \\ & 40 \end{aligned}$

Delaware Backfill

- 209.04 - "Borrow Type C (Backfill). This material shall have between 85 and 100% inclusive by dry weight, passing a 1 " (25 mm) sieve and a maximum of 25% by dry weight, passing a No. 200 ($75 \mu \mathrm{~m}$) sieve.

Delaware Backfill

- 208.04
o "For these areas, (below the roadway or backfill material shall be compacted to 95% or more of maximum density according to the requirements of subsection 202.05 (f)."
o "For these areas,
backfill
material shall be compacted to 90% or more of the maximum density according to the requirements of subsection 202.05 (f)."

Design and Installation

OStandard Installations
> Developed by ASCE (15-93)
> Adopted by AASHTO (Sections 16 \& 27)
> LRFD Section 12 and Section 27 of Construction Standard

SPIDA

Soil Pipe Interaction Design \& Analysis

INSTALLATION TYPE

Pipe Pressure Distribution

Figure 12.10.2.1-1—Heger Pressure Distribution and Arching Factors

TYPE 1

TYPE 4

Calculatfon of Earth Load

Final Grade
$W_{e}=$ prism load $\times V A F_{\substack{\text { Prism } \\ \text { Load } \\ \text { Area }}}^{F_{\text {Al }}}$

Where:
$\mathrm{VAF}=$ vertical arching factor as
 per Heger distribution

ARGHING AIGIORS

Installation Type	VAF	HAF
1	1.35	0.45
2	1.40	0.40
3	1.40	0.37
4	1.45	0.30

Vertical

Pressures

Soil Load

- $W_{\mathrm{F}}=\mathrm{F}_{\text {er }} \mathrm{B}_{\mathrm{cc}} \mathrm{H}$
> Pipe - Section 12.10.2.1-1

AASHTO LRFD 12.10.2.1

Table 12.10.2.1-3 Coefficients for use with Figure 1.

	Installation Type			
	1	2	3	4
$V A F$	1.35	1.40	1.40	1.45
HAF	0.45	0.40	0.37	0.30
$A 1$	0.62	0.85	1.05	1.45
$A 2$	0.73	0.55	0.35	0.00
$A 3$	1.35	1.40	1.40	1.45
$A 4$	0.19	0.15	0.10	0.00
$A 5$	0.08	0.08	0.10	0.11
$A 6$	0.18	0.17	0.17	0.19
a	1.40	1.45	1.45	1.45
b	0.40	0.40	0.36	0.30
c	0.18	0.19	0.20	0.25
e	0.08	0.10	0.12	0.00
f	0.05	0.05	0.05	-
u	0.80	0.82	0.85	0.90
v	0.80	0.70	0.60	-

Basic Forms of Installation

TOP OF EMBANKMENT

Positive Projecting
Embankment

Vertical

Pressures

TRENCH

Soil-Structure Interaction Factor Pipe

o "Standard installations for both embankments and trenches shall be designed for positive projection, embankment loading conditions where F_{e} shall be taken as the vertical arching factor, VAF, specified in Table 12.10.2.1-3 for each type of standard installation."

Concrete Pipe Indirect Design - 12.10.4.3 D-Load Equation

$$
\begin{equation*}
D=\left(\frac{12}{S_{i}}\right)\left(\frac{W_{E}+W_{F}}{B_{F E}}+\frac{W_{L}}{B_{F L L}}\right) \tag{12.10.4.3.1-1}
\end{equation*}
$$

where:
$B_{F E}=$ earth load bedding factor specified in Article 12.10.4.3.2a or Article 12.10.4.3.2b
$B_{F L L}=$ live load bedding factor specified in Article 12.10.4.3.2c
$S_{i} \quad=\quad$ internal diameter of pipe (in.)
$W_{E} \quad=$ total unfactored earth load specified in Article 12.10.2.1 (kip/ft)
$W_{F} \quad=$ total unfactored fluid load in the pipe as specified in Article 12.10.2.2 (kip/ft)
$W_{L} \quad=$ total unfactored live load on unit length

Bedding Factors

Standard Embankment Installation

Bedding Factors

$\mathrm{M}=0.170 \mathrm{~W}_{\mathrm{e}} \mathbf{r}$
$\mathrm{M}=0.318 \mathrm{Pr}$

$$
\mathrm{W}_{\mathrm{e}} / \mathrm{P}=1.9=\mathrm{B}_{\mathrm{f}}
$$

D-Load

Supporting strength of a pipe loaded under three-edge bearing test conditions, expressed in pounds per linear foot per foot of inside diameter or horizontal span.

ASTM C-76 Class IV
$D_{0.01}=2000$
$D_{\text {ULT }}=3000$

Basic Bedding Factor Relationship

$$
\begin{equation*}
\mathrm{B}_{\mathrm{f}}=\frac{\mathrm{M}_{\text {TEST }}}{\mathrm{M}_{\mathrm{FIELD}}} \tag{4.18}
\end{equation*}
$$

where:
$\mathrm{B}_{\mathrm{f}} \quad=$ bedding factor
$\mathrm{M}_{\text {TEST }}=$ maximum moment in pipe wall under three-edge bearing test load, inch-pounds
$\mathrm{M}_{\text {FIELD }}=$ maximum moment in pipe wall under field loads, inch-pounds

Bedding Factors

$\mathbf{B}_{\mathrm{f}}=$?

Embankment Earth Load Bedding Factor

Table 12.10.4.3.2a-1 Bedding Factors for Circular Pipe.

Pipe Diameter, in.	Standard Installations			
	Type 1	Type 2	Type 3	Type 4
12	4.4	3.2	2.5	1.7
24	4.2	3.0	2.4	1.7
36	4.0	2.9	2.3	1.7
72	3.8	2.8	2.2	1.7
144	3.6	2.8	2.2	1.7

Extra Safety Factor for Type 1 Installations

C12.5.5

The standard installations for direct design of concrete pipe were developed based on extensive parameter studies using the soil structure interaction program, SPIDA. Although past research validates that SPIDA soil structure models correlate well with field measurements, variability in culvert installation methods and materials suggests that the design for Type I installations be modified. This revision reduces soil structure interaction for Type I installations by ten percent until additional performance documentation on installation in the field is obtained.

Standard Installations D-load

$$
D=\left(\frac{12}{S_{i}}\right)\left(\frac{W_{E}+W_{F}}{B_{F E}}+\frac{W_{L}}{B_{F L L}}\right)
$$

(12.10.4.3.1-1)

ASTM C 76

ASH) C76-10

TABLE 3 Design Requirements for Class III Reinforced Concrete Pipe ${ }^{A}$

Note 1 -See Section 5 for basis of acceptance specified by the owner.
The strength test requirements in pounds-force per linear foot of pipe under the three-edge-bearing method shall be either the D-load (test load expressed in pounds-force per linear foot per foot of diameter) to produce a $0.01-\mathrm{in}$. crack, or the D-loads to produce the 0.01 -in. crack and the ultimate load as specified below, multiplied by the internal diameter of the pipe in feet.

D-load to produce a 0.01-in. crack	1350
Dread	

D-load to produce the ultimate load 2000

AASHTO LIVE LOAD DESIGN
The Latest

The Latest

NCHRP
REPORT 647
NATIONAL
COOPERATIVE
HIGHWAY
RESEARCH
PROGRAM

Recommended Design
Specifications for Live Load Distribution to Buried Structures

Where are We Measuring From? (C12.6.6.3)

Minimum Cover Orientation

$H_{\text {mus }}=$ minimum allowable cover dimension
Note: The minimum cover dimension is not to be confused with the fill height used for calculation purposes, which shall be from the top of the pipe to the top of the surface, regardless of the pipe type or pavement type.

Less Than 2 Feet of Cover

3.6.1.2.6a-General

For single-span culverts, the effects of live load may be neglected where the depth of fill is more than 8.0 ft . and exceeds the span length; for multiple span culverts, the effects may be neglected where the depth of fill exceeds the distance between inside faces of end walls.

Live load shall be distributed to the top slabs of flat top three-sided. or long-span concrete arch culverts, or concrete pipe with less than 2.0 ft of fill as specified in Article 4.6.2.10. Round concrete culverts with 1.0 ft or more but less than 2.0 ft of cover shall be designed for a depth of 1.0 ft . Round culverts with less than 1.0 ft of fill shall be analyzed with more comprehensive methods.
$\mathrm{E}=96+1.44 \mathrm{~S} \quad(4.6 \cdot 2 \cdot 10.2-1)$
$\mathrm{E}=$ Distribution width perpendicular to span in inches $\mathrm{S}=$ Clear Span in feet

Less Than 2 Feet of Cover

$\mathrm{E}_{\text {span }}=$ Distribution width parallel to span in inches

$\mathrm{E}_{\text {span }}=\mathrm{L}_{\mathrm{T}}+\operatorname{LLDF}(\mathrm{H})$

$\mathrm{L}_{\mathrm{T}}=$ length of contact area parallel to span (in)
LLDF = live load distribution factor
$\mathrm{H}=$ depth of fill

Live Load Spread for Less

 Than 2 feet of Cover (single a
For Trucks Traveling Parallel to the Axis of the Pipe

$\mathrm{E}=96+1.44 \mathrm{~S} \quad(4.6 \cdot 2 \cdot 10 \cdot 2-1)$
$\mathrm{E}=$ Distribution width perpendicular to span in inches
$\mathrm{S}=$ Clear Span in feet

Note: Equation 4.6.2.10.2-1 is for an axle load. with pipe, having much smaller spans than boxes a distribution for wheel loads is more appropriate.

$$
\mathrm{E}_{\text {wheel }}=48+0.72 \mathrm{~S}
$$

Live Load Spread for Less
 Than 2 feet of Cover

(Parallel)

Live Load Spread for Less

Than 2 feet of Cover (single axl

$\mathrm{E}_{\text {span }}=\mathrm{l}_{\mathrm{t}}+\operatorname{LLDF}(\mathrm{H})$

(4.6.2.10.2-2)

Live Load Spread for Less

Than 2 feet of Cover (single axle

$$
\begin{gathered}
\mathrm{A}_{\mathrm{LL}}=\mathrm{l}_{\mathrm{w}} \mathrm{~W}_{\mathrm{w}}(3 \cdot 6 \cdot 1 \cdot 2.6 \mathrm{a}-1) \\
\mathrm{A}_{\mathrm{LL}}=\mathrm{E}_{\text {span }} * \mathrm{E} \\
\mathrm{~A}_{\mathrm{LL}}=\begin{array}{l}
\text { rectangular area } \\
\quad \text { at depth } \mathrm{H}\left(\mathrm{ft}^{2}\right)
\end{array} \\
\mathrm{I}_{\mathrm{w}}=\text { live load patch } \\
\quad \text { length at depth } \mathrm{H}(\mathrm{ft}) \\
\mathrm{w}_{\mathrm{w}}= \\
\text { live load patch width } \\
\text { at depth } \mathrm{h}(\mathrm{ft})
\end{gathered}
$$

2 Feet or More

Where the depth of fill over round, nonconcrete culverts is greater than 1.0 ft , or when the depth of fill over flat top three-sided, or long-span concrete arch culverts, or concrete pipe is 2.0 ft or greater the live load shall be distributed to the structure as wheel loads, uniformly distributed over a rectangular area with sides equal to the dimension of the tire contact area specified in Article 3.6.1.2.5 increased by the live load distribution factors (LLDF) specified in Table 3.6.1.2.6a-1, and the provisions of Articles 3.6.1.2.6 b and 3.6.1.2.6c. More precise methods of analysis may be used.

Article 3.6.1.2.5

Direction of Traffic

Live Load Distribution Factors

Table 3.6.1.2.6a-1-Live Load Distribution Factor (LLDF) for Buried Structures

Structure Type	LLDF Transverse or Parallel to Span
Concrete Pipe with fill 1.15 for diameter 2 ft or less depth 2 ft or greater 1.75 for diameters 8 ft or greater Linearly interpolate for LLDF between these limits All other culverts and buried structures 1.15	

Traffic Perpendicular to Span

Figure S-1. Live load variation with depth for concrete box culverts (SDE refers to the proposed simplified design equations).

Figure 3.6.1.2.2-1-Characteristics of the Design Truck

Wheel and Axle Spacing

$0 \mathrm{~s}_{\mathrm{w}}=$ wheel spacing, 6.0 ft .
o $\mathrm{s}_{\mathrm{a}}=$ axle spacing (ft)

Interaction Depth for Wheels (Perpendicular)

Elevation View

Interaction Depth

3.6.1.2.6b-Traffic Parallel to the Culvert Span

For live load distribution transverse to culvert spans, the wheel/axie load interaction depth $H_{\text {int- }}$ shall be determined as:

$$
H_{\text {int-t }}=\frac{s_{w}-\frac{w_{t}}{12}-\frac{0.06 D_{i}}{12}}{L L D F}
$$

$\mathrm{s}_{\mathrm{w}}=$ wheel spacing, 6.0 ft
$\mathrm{w}_{\mathrm{t}}=$ tire patch width, 20 in .
$\mathrm{D}_{\mathrm{i}}=$ inside diameter or clear span of the culvert (in)

Interaction Depth - Distribution Transverse to Culvert Span

Where $\mathrm{H}<\mathrm{H}_{\text {intt }}$
$\mathrm{W}_{\mathrm{w}}=\mathrm{w}_{\mathrm{t}} / 12+\operatorname{LLDF}(\mathrm{H})+0.06\left(\mathrm{D}_{\mathrm{i}} / 12\right)$
(3.6.1.2.6b-2)

Where $\mathrm{H} \geq \mathrm{H}_{\text {intt }}$

$$
\mathrm{W}_{\mathrm{w}}=\mathrm{w}_{\mathrm{t}} / 12+\mathrm{s}_{\mathrm{w}}+\operatorname{LLDF}(\mathrm{H})+0.06\left(\mathrm{D}_{\mathrm{i}} / 12\right)
$$

Interaction Dept Parallel

"For live load distribution parallel to culvert span, the wheel/axle load Interaction depth $\mathrm{H}_{\text {int-p }}$ shall be determined as:"

$$
\mathrm{H}_{\text {int-p }}=\frac{\mathrm{s}_{\mathrm{a}}-\frac{\mathrm{l}_{\mathrm{t}}}{12}}{\text { LLDF }}
$$

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{a}}=\operatorname{axle} \text { spacing }(\mathrm{ft}) \\
& \mathrm{l}_{\mathrm{t}}=\text { tire patch length, } 10 \text { (in) } \\
& \mathrm{LLDF}=\text { live load distribution factor }
\end{aligned}
$$

Interaction Depth - Distribution Parallel to Culvert Span

Where $\mathrm{H}<\mathrm{H}_{\text {int-p }}$
$1_{\mathrm{w}}=\mathrm{l}_{\mathrm{t}} / 12+\operatorname{LLDF}(\mathrm{H})$
(3.6.1.2.6b-5)

Where $\mathrm{H} \geq \mathrm{H}_{\text {int-p }}$

$$
\begin{equation*}
1_{\mathrm{w}}=\mathrm{l}_{\mathrm{t}} / 12+\mathrm{s}_{\mathrm{a}}+\operatorname{LLDF}(\mathrm{H}) \tag{3.6.1.2.6b-6}
\end{equation*}
$$

Pressure Area at the Top of the Pipe

Plan View

$$
\begin{equation*}
\mathrm{A}_{\mathrm{LL}}=\mathrm{l}_{\mathrm{w}} \mathrm{w}_{\mathrm{w}} \tag{3.6.1.2.6a-1}
\end{equation*}
$$

Pressure at the Top of the Pipe

$$
\mathrm{P}_{\mathrm{L}}=\frac{\mathrm{P}\left(1+\frac{\mathrm{IM}}{100}\right)(\mathrm{m})}{(3.6 .1 .2 .6 \mathrm{~b}-7)}
$$

$\mathrm{P}_{\mathrm{L}}=$ live load vertical crown pressure (ksf)
$\mathrm{P}=$ live load applied at surface on all interacting wheels (kips)
$\mathrm{IM}=$ dynamic load allowance as specified in Article 3.6.2.2 $\mathrm{m}=$ multiple presence factor specified in Article 3.6.1.1.2

Dynamic Load Allowance

- LRFD - Dynamic Load Allowance (3.6.2.2)

$$
\begin{aligned}
> & \text { DLA }
\end{aligned}=0.33\left(1.0-0.125 \mathrm{D}_{\mathrm{E}}\right), ~\left(\mathrm{D}_{\mathrm{E}}=\text { Depth of cover }(\mathrm{ft})\right.
$$

Multiple Presence Factor

	Design Code	
	AASHTO STD	AASHTO LRFD
1	$\mathbf{1 . 0}$	1.2
2	$\mathbf{1 . 0}$	1.0
3	$\mathbf{0 . 9 0}$	0.85
4	$\mathbf{0 . 7 5}$	0.65

For Concrete Pipe, Load must be in

Terms of lbs/ft

$$
\mathrm{W}_{\mathrm{L}}=\mathrm{P}_{\mathrm{L}} * \mathrm{~L}=\text { live load }(\mathrm{lbs} / \mathrm{ft})
$$

$\mathrm{L}=$ Smaller of 1_{w} or D_{o}

D-Load Equation

$$
\mathrm{D}=\left(\frac{12}{\mathrm{~S}_{\mathrm{i}}}\right)\left(\frac{\mathrm{W}_{\mathrm{E}}+\mathrm{W}_{\mathrm{F}}}{\mathrm{~B}_{\mathrm{FE}}}+\frac{\mathrm{W}_{\mathrm{L}}}{\mathrm{~B}_{\mathrm{FLL}}}\right) \quad(12 \cdot 10 \cdot 4 \cdot 3 \cdot 1-1)
$$

$\mathrm{B}_{\mathrm{FLL}}=$ Live Load Bedding Factor

Live Load Bedding Facłors

Table 12.10.4.3.2c-1

Pipe Diameter, in	Fill Height, ft	
	$<2 \mathrm{ft}$	$\geq 2 \mathrm{ft}$
12	3.2	2.4
18	3.2	2.4
24	3.2	2.4
30 and larger	2.2	2.2

STANDARD INSTALLATIONS
 Design Examples

EXAMPLE 1

- Embankment Condition
> Pipe Size = 36" I.D., $44^{\prime \prime}=3.67 \mathrm{ft}$. - D。
> Fill Height = H = 5 ft .
> Soil Unit Weight = w = $120 \mathrm{lbs} / \mathrm{ft}^{3}$
> Check Type 2 and Type 3 Installations

STEPS

1. Determine Earth Load
2. Determine Live Load
3. Select Bedding
4. Determine Bedding Factor
5. Application of Factor of Safety
6. Selection of Pipe Strength

DETERMINE EARTH LOAD

- Soil Prism Load:
> PL = w H D。
> PL = ($120 \mathrm{lbs} / \mathrm{ff}^{3}$) $(5 \mathrm{ft}).(3.67 \mathrm{ft}$.
> $\mathrm{PL}=2202 \mathrm{lbs} / \mathrm{ft}$
> W = VAF x PL (AASHTO Equation 12.10.2.1-1)
> Type 2
> $\mathrm{W}=(1.40)(2202 \mathrm{lbs} / \mathrm{ft})$
Type 3
> W = $3083 \mathrm{lbs} / \mathrm{ft}$
$W=(1.40)(2202 \mathrm{lbs} / \mathrm{ft})$
W = $3083 \mathrm{lbs} / \mathrm{ft}$

AASHTO LRFD Bridge Design Specifications, Section 12

The unfactored earth load, W_{E}, shall be determined as:
$W_{E}=F_{e} w B_{c} H$
where:
$W_{E}=$ unfactored earth load (kip/ft)
$F_{e}=$ soil-structure interaction factor for the specified installation as defined herein
$B_{c}=$ out-to-out horizontal dimension of pipe (ft)
$H=$ height of fill over pipe (ft)
$w=$ unit weight of soil (pcf)

AASHTO LRFD 12.10.2.1

Table 12.10.2.1-3 Coefficients for use with Figure 1.

	Installation Type			
	1	2	3	4
V.AF	1.35	1.40	1.40	1.45
HAF	0.45	0.40	0.37	0.30
A1	0.62	0.85	1.05	1.45
A2	0.73	0.55	0.35	0.00
$A 3$	1.35	1.40	1.40	1.45
$A 4$	0.19	0.15	0.10	0.00
$A 5$	0.08	0.08	0.10	0.11
$A 6$	0.18	0.17	0.17	0.19
a	1.40	1.45	1.45	1.45
b	0.40	0.40	0.36	0.30
c	0.18	0.19	0.20	0.25
e	0.08	0.10	0.12	0.00
f	0.05	0.05	0.05	-
u	0.80	0.82	0.85	0.90
v	0.80	0.70	0.60	-

Determine Fluid load

- $Y_{w}=62.4$ pcf
- ID $=3 \mathrm{ft}$
- $W_{f}=Y_{w} \times \pi \times(I D / 2)^{2}$
- $\mathrm{W}_{\mathrm{f}}=441 \mathrm{lbs} / \mathrm{ft}$

DETERMINE LIVE LOAD

- 3.6.1.2.6a
> "For single-span culverts, the effects of live load may be neglected where the depth of fill is more than 8.0 ft . and exceeds the span length;"

Interaction Depth

3.6.1.2.6b-Traffic Parallel to the Culvert Span

For live load distribution transverse to culvert spans, the wheel/axle load interaction depth $H_{\text {int- }}$ shall be determined as:

$$
H_{i n t-t}=\frac{s_{w}-\frac{w_{t}}{12}-\frac{0.06 D_{i}}{12}}{L L D F}
$$

Live Load Distribution Facłor

Table 3.6.1.2.6a-1-Live Load Distribution Factor (LLDF) for Buried Structures

Structure Type
LLDF Transverse or Parallel to Span
Concrete Pipe with fill 1.15 for diameter 2 ft or less depth 2 ft or greater

1.75 for diameters 8 ft or greater

Linearly interpolate for LLDF between these limits

All other culverts and 1.15

 buried structures$$
\begin{gathered}
\operatorname{LLDF}=1.15+\frac{(3 \mathrm{ft}-2 \mathrm{ft})}{(8 \mathrm{ft}-2 \mathrm{ft})}(1.75-1.15) \\
\text { LLDF }=1.25
\end{gathered}
$$

Interaction Depth

3.6.1.2.6b-Traffic Parallel to the Culvert Span

For live load distribution transverse to culvert spans, the wheel/axle load interaction depth $H_{\text {int- }}$ shall be determined as:

$$
H_{i n t-t}=\frac{s_{w}-\frac{w_{t}}{12}-\frac{0.06 D_{i}}{12}}{L L D F}
$$

$$
\begin{gathered}
\mathrm{H}_{\mathrm{int-t}}=\frac{6 \mathrm{ft} .-(20 " / 12)-(0.06 * 36 ") / 12}{1.25} \\
\mathrm{H}_{\mathrm{int-t}}=3.32 \mathrm{ft}
\end{gathered}
$$

Interaction Depth for Wheels
 (Perpendicular)

Elevation View

Interaction Dept Parallel

"For live load distribution parallel to culvert span, the wheel/axle load Interaction depth $\mathrm{H}_{\text {int-p }}$ shall be determined as:"

$$
\begin{gathered}
\mathrm{H}_{\mathrm{int}-\mathrm{p}}=\frac{\mathrm{s}_{\mathrm{a}}-\frac{\mathrm{l}_{\mathrm{t}}}{12}}{\mathrm{LLDF}} \\
\mathrm{H}_{\mathrm{int-p}}=\frac{4 \mathrm{ft}-\left(10^{\prime \prime} / 12\right)}{1.25} \\
\mathrm{H}_{\text {int-p }}=2.53 \mathrm{ft}
\end{gathered}
$$

Pressure at top of Pipe

For The Single Axle (HS20)
Where $\mathrm{H} \geq \mathrm{H}_{\text {int-t }}$

$$
\begin{gathered}
\mathrm{W}_{\mathrm{w}}=\mathrm{w}_{\mathrm{t}} / 12+\mathrm{s}_{\mathrm{w}}+\operatorname{LLDF}(\mathrm{H})+0.06\left(\mathrm{D}_{\mathrm{i}} / 12\right) \quad(3.6 .1 .2 .6 \mathrm{~b}-3) \\
\mathrm{W}_{\mathrm{w}}=(20 " / 12)+6 \mathrm{ft}+1.25 * 5 \mathrm{ft}+0.06 * 3 \mathrm{ft} \\
\mathrm{~W}_{\mathrm{w}}=14.1 \mathrm{ft}
\end{gathered}
$$

Where $\mathrm{H}<\mathrm{H}_{\text {int-p }}$

$$
\begin{gathered}
1_{\mathrm{w}}=\mathrm{l}_{\mathrm{t}} / 12+\operatorname{LLDF}(\mathrm{H}) \\
\mathrm{l}_{\mathrm{w}}=10 * / 12+1.25 * 5 \mathrm{ft} \\
\mathrm{l}_{\mathrm{w}}=7.1 \mathrm{ft}
\end{gathered}
$$

$$
A_{L L}=14.1 \mathrm{ft} \times 7.1 \mathrm{ft}=100 \mathrm{ft}^{2}
$$

Pressure at top of Pipe

For The Tandem Axles

Where $\mathrm{H} \geq \mathrm{H}_{\text {int-t }}$

$$
\begin{gathered}
\mathrm{W}_{\mathrm{w}}=\mathrm{w}_{\mathrm{t}} / 12+\mathrm{s}_{\mathrm{w}}+\operatorname{LLDF}(\mathrm{H})+0.06\left(\mathrm{D}_{\mathrm{i}} / 12\right) \quad(3.6 .1 .2 .6 \mathrm{~b}-3) \\
\mathrm{W}_{\mathrm{w}}=(20 " / 12)+6 \mathrm{ft}+1.25 * 5 \mathrm{ft}+0.06 * 3 \mathrm{ft} \\
\mathrm{~W}_{\mathrm{w}}=14.1 \mathrm{ft}
\end{gathered}
$$

Where $\mathrm{H}>\mathrm{H}_{\text {int-p }}$

$$
\begin{equation*}
1_{\mathrm{w}}=\mathrm{l}_{\mathrm{t}} / 12+\mathrm{s}_{\mathrm{a}}+\operatorname{LLDF}(\mathrm{H}) \tag{3.6.1.2.6b-5}
\end{equation*}
$$

$$
\begin{gathered}
\mathrm{l}_{\mathrm{w}}=10 " / 12+4 \mathrm{ft}+1.25 * 5 \mathrm{ft} \\
\mathrm{l}_{\mathrm{w}}=11.1 \mathrm{ft}
\end{gathered}
$$

$$
A_{L L}=14.1 \mathrm{ft} \times 11.1 \mathrm{ft}=156.5 \mathrm{ft}^{2}
$$

Pressure at top of Pipe

$$
\begin{equation*}
P_{L}=\frac{P\left(1+\frac{I M}{100}\right)(m)}{A_{L L}} \tag{3.6.1.2.6b-7}
\end{equation*}
$$

Load P

For the single axle $-\mathrm{P}=16$ kips x 2 wheel loads

$$
\mathrm{P}=32 \mathrm{kips}
$$

For the tandem axle $-\mathrm{P}=12.5$ kips x 4 wheel loads

$$
\mathrm{P}=50 \mathrm{kips}
$$

Pressure at top of Pipe

$$
P_{L}=\frac{P\left(1+\frac{\mathrm{IM}}{100}\right)(\mathrm{m})}{A_{L L}}
$$

$$
\begin{gathered}
\mathrm{IM}=33 *[1-0.125(\mathrm{H})] \\
\mathrm{IM}=33 *[1-0.125(5)] \\
\mathrm{IM}=12.375
\end{gathered}
$$

$$
\mathrm{m}=1.2 \text { for a single lane }
$$

Pressure at top of Pipe

$$
\begin{gathered}
P_{L}=\frac{\mathrm{P}\left(1+\frac{\mathrm{IM}}{100}\right)(\mathrm{m})}{\mathrm{A}_{\mathrm{LL}}} \quad(\text { (3.6.1.2.6b-7) } \\
\mathrm{P}_{\mathrm{Ls}}=\frac{32000 \mathrm{lbs}\left(1+\frac{12.375}{100}\right)(1.2)}{100 \mathrm{ft}^{2}}=431.5 \mathrm{psf} \\
\mathrm{P}_{\mathrm{Lt}}=\frac{50000 \mathrm{lbs}\left(1+\frac{12.375}{100}\right)(1.2)}{156.5 \mathrm{ft}^{2}} \quad=430.8 \mathrm{psf}
\end{gathered}
$$

Live Load on the Pipe

- Outside Diameter $=3.67 \mathrm{lbs} / \mathrm{ft}$
- Spread length for Single Axle

$$
>I_{w}=7.1 \mathrm{ft}
$$

- Spread length for Tandem Axles

$$
>I_{w}=11.1 \mathrm{ft}
$$

- Live load = O.D. $\times P_{\mathrm{L}}$
$>\mathrm{W}_{\mathrm{L}}=3.67 \mathrm{ft} \times 431.5 \mathrm{psf}=1583.6 \mathrm{lbs} / \mathrm{ft}$

For Concrete Pipe, Load must be in

Terms of lbs/ft

$$
\mathrm{W}_{\mathrm{L}}=\mathrm{P}_{\mathrm{L}} * \mathrm{~L}=\text { live load }(\mathrm{lbs} / \mathrm{ft})
$$

$\mathrm{L}=$ Smaller of 1_{w} or D_{o}

Recap of Loads

- Type 2
$>\mathrm{W}_{\mathrm{E}}=3083 \mathrm{lbs} / \mathrm{ft}$
$>W_{F}=441 \mathrm{lbs} / \mathrm{ft}$
$>\mathrm{W}_{\mathrm{L}}=1583.6 \mathrm{lbs} / \mathrm{ft}$
- Type 3
$>\mathrm{W}_{\mathrm{E}}=3083 \mathrm{lbs} / \mathrm{ft}$
$>W_{F}=441 \mathrm{lbs} / \mathrm{ft}$
$>\mathrm{W}_{\mathrm{L}}=1583.6 \mathrm{lbs} / \mathrm{ft}$

SELECTION OF BEDDING

- We will compare Type 2 and Type 3 installations.

Standard Installations D-load

$$
D=\left(\frac{12}{S_{i}}\right)\left(\frac{W_{E}+W_{F}}{B_{F E}}+\frac{W_{L}}{B_{F L L}}\right)
$$

(12.10.4.3.1-1)

Embankment Bedding Factors

Table 12.10.4.3.2a-1 Bedding Factors for Circular Pipe.

Pipe Diameter, in.	Standard Installations			
	Type 1	Type 2	Type 3	Type 4
12	4.4	3.2	2.5	1.7
24	4.2	2.0	2.4	1.7
36	4.0	2.9	2.3	1.7
72	3.8	2.8	2.2	1.7
144	3.6	2.8	2.2	1.7

Earth Load Bedding Factor

- Earth Load Bedding Factors for Embankment Condition (Table 12.10.4.3.2a-1)
> Type 2, $\mathrm{B}_{\mathrm{FE}}=2.9$
> Type 3, $\mathrm{B}_{\mathrm{FE}}=2.3$

Live Load Bedding Factor

Table 12.10.4.3.2c-1

Pipe Diameter, in	$<2 \mathrm{ft}$	$\geq 2 \mathrm{ft}$
	3.2	2.4
18	3.2	2.4
24	3.2	2.4
30 and larger	2.2	2.2

> Type $2, B_{F L L}=2.2$
> Type $3, B_{F L L}=2.2$

Find D-load

$$
D=\left(\frac{12}{S_{i}}\right)\left(\frac{W_{E}+W_{F}}{B_{F E}}+\frac{W_{L}}{B_{F L L}}\right)
$$

(12.10.4.3.1-1)

Application of Factor of Safety

- Design is based on 0.01 inch crack, so use a factor of safety of 1.0.

SELECTION OF PIPE STRENGTH FOR A TYPE 2 INSTALLATION

$D_{0.01}=\left[\frac{3,083 \mathrm{lbs} / \mathrm{ft}+441 \mathrm{lbs} / \mathrm{ft}}{2.9}+\frac{1584 \mathrm{lbs} / \mathrm{ft}}{2.2}\right] \times \frac{1.0}{3 \mathrm{ft}}$

$\mathrm{D}_{0.01}=\mathbf{6 4 5} \mathrm{lbs} /$ linear ft/ft of diameter

SELECTION OF PIPE STRENGTH FOR A TYPE 3 INSTALLATION

$D_{0.01}=\left[\frac{3,083 \mathrm{lbs} / \mathrm{ft}+441 \mathrm{lbs} / \mathrm{ft}}{2.3}+\frac{1584 \mathrm{lbs} / \mathrm{ft}}{2.2}\right] \times \frac{1.0}{3 \mathrm{ft}}$

$\mathrm{D}_{0.01}=751 \mathrm{lbs} /$ linear $\mathrm{ft} / \mathrm{ft}$ of diameter

ASTM C 76 PIPE CLASSES

○ Class I- $\mathrm{D}_{0.01}=800 \mathrm{lbs} / \mathrm{ft} / \mathrm{ft}$

- Class II - $\mathrm{D}_{0.01}=1000 \mathrm{lbs} / \mathrm{ft} / \mathrm{ft}$

○ Class III - $\mathrm{D}_{0.01}=1350 \mathrm{lbs} / \mathrm{ft} / \mathrm{ft}$

- Class IV - $\mathrm{D}_{0.01}=2000 \mathrm{lbs} / \mathrm{ft} / \mathrm{ft}$

○ Class $\vee-D_{0.01}=3000 \mathrm{lbs} / \mathrm{ft} / \mathrm{ft}$

Elliptical Pipe Design

Elliptical Pipe Installations

HORIZONTAL ELLIPTICAL PIPE

Elliptical Pipe Installations

Table 27.5.2.2-1 Standard Embankment Installation Soils and Minimum Compaction Requirements.

Installation Type	Bedding Thickness	Haunch and Outer Bedding	Lower Side
Type 1	For soil foundation, $B_{c} / 24.0 \mathrm{in}$. minimum, not less than 3.0 in . For rock foundation, use $B_{c} / 12.0 \mathrm{in}$. minimum, not less than 6.0 in .	95\% SW	$\begin{aligned} & 90 \% \text { SW, } 95 \% \mathrm{ML} \\ & \text { or } 100 \% \mathrm{CL} \end{aligned}$
Type 2-Installations are available for horizontal elliptical, vertical elliptical and arch pipe	For soil foundation, $B_{c} / 24.0 \mathrm{in}$. minimum, not less than 3.0 in . For rock foundation, use $B_{c} / 12.0 \mathrm{in}$. minimum, not less than 6.0 in .	90\% SW or 95\% ML	$\begin{aligned} & 85 \% \text { SW, } 90 \% \text { ML } \\ & \text { or } 95 \% \text { CL } \end{aligned}$
Type 3-Installations are available for horizontal elliptical, vertical elliptical and arch pipe	For soil foundation, $B_{c} / 24.0 \mathrm{in}$. minimum., not less than 3.0 in . For rock foundation, use $B_{c} / 12.0 \mathrm{in}$. minimum, not less than 6.0 in .	$\begin{aligned} & 85 \% \text { SW, } 90 \% \mathrm{ML} \text { or } \\ & 95 \% \mathrm{CL} \end{aligned}$	$\begin{aligned} & 85 \% \mathrm{SW}, 90 \% \mathrm{ML} \\ & \text { or } 95 \% \mathrm{CL} \end{aligned}$
Type 4	For soil foundation, no bedding required. For rock foundation, use $B_{c} / 12.0$ in. minimum, not less than 6.0 in .	No compaction required, except if CL, use 85% CL	No compaction required, except if CL, use 85% CL

Find D-load

$$
D=\left(\frac{12}{S_{i}}\right)\left(\frac{W_{E}+W_{F}}{B_{F E}}+\frac{W_{L}}{B_{F L L}}\right)
$$

(12.10.4.3.1-1)

Soil Load

o $W_{E}=F_{e} \gamma_{S} B_{C} H$
> Pipe - Section 12.10.2.1-1

AASHTO LRFD 12.10.2.1

Table 12.10.2.1-3 Coefficients for use with Figure 1.

	Installation Type			
	1	2	3	4
$V A F$	1.35	1.40	1.40	1.45
HAF	0.45	0.40	0.37	0.30
$A 1$	0.62	0.85	1.05	1.45
$A 2$	0.73	0.55	0.35	0.00
$A 3$	1.35	1.40	1.40	1.45
$A 4$	0.19	0.15	0.10	0.00
$A 5$	0.08	0.08	0.10	0.11
$A 6$	0.18	0.17	0.17	0.19
a	1.40	1.45	1.45	1.45
b	0.40	0.40	0.36	0.30
c	0.18	0.19	0.20	0.25
e	0.08	0.10	0.12	0.00
f	0.05	0.05	0.05	-
u	0.80	0.82	0.85	0.90
v	0.80	0.70	0.60	-

SYMMETRICAL ABOUT AXES

Approximate Equivalent Aound Stze, In. K	Ful Flow Water Area, m^{2}	Rise, In.	Span, in.	A, ln.	B, In.	R_{1}, ln.	R_{2}, ln.	e Degrees
18	1.83	141/4	2294	5\%	121/4	6	20	22.6
24	3.28	191/4	301/4	6\%/	16min	81/4	261/4	22.6
27	4.12	211/2	34	734	181/2	91/4	291/4	22.6
30	5.10	24	3774	85	2084	101/4	329/4	22.6
33	6.33	263/4	42	91/2	221/1	111/2	$361 / 4$	22.6
36	7.36	283/4	451/2	101/2	247/1	121/4	391/4	22.6
39	8.78	311/2	491/2	111/4	27	131/2	423/4	22.6
42	10.2	34	$531 / 4$	121/4	29	$14^{1 / 2}$	46	22.6
48	12.9	381/4	60	131/2	323\%	161/2	511/2	22.6
54	16.7	431/2	68	151/4	$369 / 4$	189/4	581/2	22.6
60	20.5	481/4	751/2	17	40\%/1	203/4	65	22.6
66	24.8	53	83	1894	45	229/4	711/2	22.6
72	29.4	$573 / 4$	901/2	201/2	491/6	243/4	78	22.6
78	34.6	$623 / 4$	98	22	$531 / 2$	27	B41/2	22.6
84	40.1	671/2	105\%	2374	57	29	903/4	22.6
90	46.1	721/2	113	251/2	61	31	971/4	22.6
96	52.4	771/4	1201/2	27	651/1	$331 / 4$	10334	22.6
102	59.1	82	128	2894	69	351/4	110	22.6
108	66.4	87	1351/2	301/4	729/4	$371 / 2$	1161/4	22.6
114	73.9	913/4	143	32	76\%/	391/2	$1223 / 4$	22.6
120	82.1	963/4	150\%/	337/4	80\%	411/2	1291/4	22.7
132	99.2	1061/2	1651/2	37	9894	453/4	142	22.6
144	118	116	180\%4	40\%	967/4	50	15434	22.6

Nore 1-Rise, span, and radii are fixed; other dimensions and angles are calculated
FIG. 5 Cross-Sectional Shape of Elliptical Pipe

Flow Area Per ASTM C 507

Approximate Equivalent Round Size, in.	Full Flow Water Area, ft^{3}	Rise, in.	Span, in.
K			

Hydraulic Capacity of Culverts

American
Concrete Pipe Association

Flow Capacities

concrete-pipe.org

Flow Capacities

Live Load

Bedding Factors

Not the Same Earth

 Load Bedding Factor As Circular Pipe12.10.4.3.2b-Earth Load Bedding Factor for Arch and Elliptical Pipe

The bedding factor for installation of arch and elliptical pipe shall be taken as:

$$
\begin{equation*}
B_{F E}=\frac{C_{A}}{C_{N}-x q} \tag{12.10.4.3.2b-1}
\end{equation*}
$$

where:
$C_{A}=$ constant corresponding to the shape of the pipe, as specified in Table 12.10.4.3.2b-1
$C_{N}=$ parameter that is a function of the distribution of the vertical load and vertical reaction, as specified in Table 12.10.4.3.2b-1
$=$ parameter that is a function of the area of the vertical projection of the pipe over which lateral pressure is effective, as specified in Table 12.10.4.3.2b-1
$=$ ratio of the total lateral pressure to the total vertical fill load specified herein

Design values for C_{A}, C_{N}, and x are listed in Table 12.10.4.3.2b-1

Table 12.10.4.3.2b-1-Design Values of Parameters in Bedding Factor Equation

Pipe Shape	C_{A}	Installation Type	C_{N}	Projection Ratio, p	x
Horizontal Elliptical and Arch	1.337	2	0.630	0.9	0.421
				0.7	0.369
		3	0.763	0.5	0.268
				0.3	0.148
Vertical Elliptical	1.021	2	0.516	0.9	0.718
				0.7	0.639
		3	0.615	0.5	0.457
				0.3	0.238

The value of the parameter q is taken as:

- For arch and horizontal elliptical pipe:

$$
q=0.23 \frac{p}{F_{e}}\left(1+0.35 p \frac{B_{c}}{H}\right) \quad(12.10 .4 .3 .2 \mathrm{~b}-2)
$$

- For vertical elliptical pipe:

$$
\begin{equation*}
q=0.48 \frac{p}{F_{e}}\left(1+0.73 p \frac{B_{c}}{H}\right) \tag{12.10.4.3.2~b-3}
\end{equation*}
$$

where:
$p=$ projection ratio, ratio of the vertical distance between the outside top of the pipe, and the ground of bedding surface to the outside vertical height of the pipe

Bedding Factor Equation

$$
\begin{equation*}
B_{F E}=\frac{C_{A}}{C_{N}-x q} \tag{12.10.4.3.2b-1}
\end{equation*}
$$

where:
$C_{A}=$ constant corresponding to the shape of the pipe, as specified in Table 12.10.4.3.2b-1
$C_{N}=$ parameter that is a function of the distribution of the vertical load and vertical reaction, as specified in Table 12.10.4.3.2b-1
$=$ parameter that is a function of the area of the vertical projection of the pipe over which lateral pressure is effective, as specified in Table 12.10.4.3.2b-1
$=$ ratio of the total lateral pressure to the total vertical fill load specified herein

Bedding Factor Per AASHTO

The bedding factor for installation of arch and elliptical pipe shall be taken as:

$$
B_{F E}=\frac{C_{A}}{C_{N}-x q}
$$

(12.10.4.3.2b-1)

Table 12.10.4.3.2b-1-Design Values of Parameters in Bedding Factor Equation

Pipe Shape	$C_{\text {A }}$	Installation Type	C_{N}	Projection Ratio, p	x
Horizontal Elliptical and Arch	1.337	2	0.630	0.9	0.421
				0.7	0.369
		3	0.763	0.5	0.268
				0.3	0.148
Vertical Elliptical	1.021	2	0.516	0.9	0.718
				0.7	0.639
		3	0.615	0.5	0.457
				0.3	0.238

Horizontal Elliptical Bedding Factor

- For arch and borizontal elliptical pipe:

$$
q=0.23 \frac{p}{F_{e}}\left(1+0.35 p \frac{B_{c}}{H}\right) \quad(12.10 .4 .3 .2 \mathrm{~b}-2)
$$

o $F_{e}=1.4$

Bedding Factor Per AASHTO

The bedding factor for installation of arch and elliptical pipe shall be taken as:

$$
B_{F E}=\frac{C_{A}}{C_{N}-x q}
$$

(12.10.4.3.2b-1)

Live Load Bedding Facłors

Table 12.10.4.3.2c-1

Pipe Diameter, in	Fill Height, ft	
	$<2 \mathrm{ft}$	$\geq 2 \mathrm{ft}$
12	3.2	2.4
18	3.2	2.4
24	3.2	2.4
30 and larger	2.2	2.2

EXAMPLE 2

- 34×53 horizontal elliptical pipe
- Positive projecting embankment condition
- Type 2 Installation
- 1 foot of cover
- Soil unit weight of $120 \mathrm{lbs} / \mathrm{ft}^{3}$

STEPS

1. Determine Earth Load
2. Determine Live Load
3. Select Bedding
4. Determine Bedding Factor
5. Application of Factor of Safety
6. Selection of Pipe Strength

DETERMINE EARTH LOAD

- Wall thickness $=5$ in. (from ASTM C 507)
- Outside Span $\mathrm{B}_{\mathrm{c}}=53 \mathrm{in}+2$ (5 in .) $=5.25 \mathrm{ft}$
o Soil Prism Load:
> $\mathrm{PL}=\mathrm{wHB} \mathrm{B}_{\mathrm{c}}$
> PL = ($120 \mathrm{lbs} / \mathrm{ft}^{3}$) (1 ft.) (5.25 ft.$\left.\right)$
> $\mathrm{PL}=630 \mathrm{lbs} / \mathrm{ft}$
> W = VAF x PL (AASHTO Equation 12.10.2.1-1)
> Type 2
> $\mathrm{W}=(1.40)(630 \mathrm{lbs} / \mathrm{ft})$
> W = $882 \mathrm{lbs} / \mathrm{ft}$

Determine Fluid Load

- $Y_{w}=62.4$ pcf
- $\mathrm{A}=10.2 \mathrm{ft}$
- $W_{f}=Y_{w} \times A$
- $\mathrm{W}_{\mathrm{f}}=636 \mathrm{lbs} / \mathrm{ft}$

Flow Area Per ASTM C 507

Approximate Equivalent Round Size, in. K	Full Flow Water Area, ft^{3}	Rise, in.	Span, in.
18	1.83	141/4	$22^{3 / 4}$
24	3.28	191/4	301/4
27	4.12	211/2	34
30	5.10	24	$373 / 4$
33	6.33	263/4	42
36	7.36	283/4	451/2
39	8.78	$311 / 2$	491/2
42	10.2	34	531/4

这= Elliptical Concrete Pipe

Roughness Coefficient (n): 0.012 ?

Pipe Diameter (in.): 42 in. -34 in. $\times 53$ iṭ. ?

Pipe Slope (\%): $0.10 .001 \mathrm{ft} / \mathrm{ft}$

Flow Depth (\%): 100

Result

(2) Pipe Flow $=\mathrm{Q}=36.05 \mathrm{ft}^{3} / \mathrm{sec}$

Area of Flow $=A=10.14 \mathrm{ft}^{2}$
Velocity of Flow $=$ V $=3.55 \mathrm{ft} / \mathrm{sec}$

DETERMINE LIVE LOAD

Less Than 2 Feet of Cover

$\mathrm{E}_{\text {span }}=$ Distribution width parallel to span in inches

$$
\mathbf{E}_{\text {span }}=\mathrm{L}_{\mathrm{T}}+\mathrm{LLDF}(\mathbf{H})
$$

$\mathrm{L}_{\mathrm{T}}=$ length of contact area parallel to span (in)
LLDF = live load distribution factor $\mathrm{H}=$ depth of fill

Less Than 2 Feet of Cover

3.6.1.2.6a-General

For single-span culverts, the effects of live load may be neglected where the depth of fill is more than 8.0 ft . and exceeds the span length; for multiple span culverts, the effects may be neglected where the depth of fill exceeds the distance between inside faces of end walls.

Live load shall be distributed to the top slabs of flat top three-sided. or long-span concrete arch culverts, or concrete pipe with less than 2.0 ft of fill as specified in Article 4.6.2.10. Round concrete culverts with 1.0 ft or more but less than 2.0 ft of cover shall be designed for a depth of 1.0 ft . Round culverts with less than 1.0 ft of fill shall be analyzed with more comprehensive methods.
$\mathrm{E}=96+1.44 \mathrm{~S} \quad(4.6 \cdot 2 \cdot 10.2-1)$
$\mathrm{E}=$ Distribution width perpendicular to span in inches $\mathrm{S}=$ Clear Span in feet

Less Than 2 Feet of Cover

$\mathrm{E}_{\text {span }}=$ Distribution width parallel to span in inches

$\mathrm{E}_{\text {span }}=\mathrm{L}_{\mathrm{T}}+\operatorname{LLDF}(\mathrm{H})$

$\mathrm{L}_{\mathrm{T}}=$ length of contact area parallel to span (in)
LLDF = live load distribution factor
$\mathrm{H}=$ depth of fill

Live Load Spread for Less

 Than 2 feet of Cover (single a
Live Load Widłh

o $\mathrm{E}=96+1.44(53 " / 12)$

- $E=102.36$ inches $=8.53 \mathrm{ft}$.

Live Load Length

- LLDF = 1.39
- $\mathrm{E}=10^{\prime \prime} / 12+1 \mathrm{ft} \times 1.39$
- $\mathrm{E}=2.22 \mathrm{ft}$.

Area of Pressure on Top of Pipe

o $A_{\text {LL }}=E^{*} E_{\text {span }}$
$0 A_{L L}=8.53 \mathrm{ft} \times 2.22 \mathrm{ft}$

- $A_{\mathrm{LL}}=18.94 \mathrm{ft}^{2}$
o $P=32,000 \mathrm{lbs}$
o $M=1.2$

Pressure at top of Pipe

$$
P_{L}=\frac{P\left(1+\frac{\mathrm{IM}}{100}\right)(\mathrm{m})}{A_{\mathrm{LL}}}
$$

$$
\begin{gathered}
\mathrm{IM}=33 *[1-0.125(\mathrm{H})] \\
\mathrm{IM}=33 *[1-0.125(1)] \\
\mathrm{IM}=28.88
\end{gathered}
$$

Pressure at top of Pipe

$$
\begin{gathered}
P_{L}=\frac{P\left(1+\frac{I M}{100}\right)(m)}{A_{L L}} \\
P_{L}=\frac{32000 \mathrm{lbs}\left(1+\frac{28.88}{100}\right)(1.2)}{18.94 \mathrm{ft}^{2}} \\
P_{L}=2,613 \mathrm{psf}
\end{gathered}
$$

Live Load

- OD $=5.25 \mathrm{ft}$.
- $\mathrm{E}_{\text {span }}=2.22 \mathrm{ft}$
- $\mathrm{E}_{\text {span }}<\mathrm{OD}$, so use Espan for live load calculation
- $\mathrm{W}_{\mathrm{LL}}=2.22 \mathrm{ft} \times 2613 \mathrm{psf}$
- $\mathrm{W}_{\mathrm{LL}}=5,801 \mathrm{lbs} / \mathrm{ft}$

Recap of Loads

- Type 2
$>\mathrm{W}_{\mathrm{E}}=882 \mathrm{lbs} / \mathrm{ft}$
$>\mathrm{W}_{\mathrm{F}}=636 \mathrm{lbs} / \mathrm{ft}$
$>\mathrm{W}_{\mathrm{L}}=5801 \mathrm{lbs} / \mathrm{ft}$

Determination of Bedding Factors

Bedding Factor Per AASHTO

The bedding factor for installation of arch and elliptical pipe shall be taken as:

$$
B_{F E}=\frac{C_{A}}{C_{N}-x q}
$$

(12.10.4.3.2b-1)

Table 12.10.4.3.2b-1-Design Values of Parameters in Bedding Factor Equation

Horizontal Elliptical Bedding Factor

- For arch and borizontal elliptical pipe:

$$
q=0.23 \frac{p}{F_{e}}\left(1+0.35 p \frac{B_{c}}{H}\right) \quad(12.10 .4 .3 .2 \mathrm{~b}-2)
$$

o $F_{e}=1.4$
o $p=0.7$
o $B_{C}=5.25 \mathrm{ft}$.
o $H=1 \mathrm{ft}$.
$o \mathrm{q}=0.263$

Earth Load Bedding Factor

$$
\mathrm{B}_{\mathrm{FE}}=\frac{\mathrm{C}_{\mathrm{A}}}{\mathrm{C}_{\mathrm{N}}-\mathrm{xq}} \quad \begin{aligned}
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \mathrm{C}_{\mathrm{A}}= \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}=0000.3370 .369
$$

$$
\mathrm{B}_{\mathrm{FE}}=\frac{1.337}{0.630-0.369 * 0.263}
$$

$$
\mathrm{B}_{\mathrm{FE}}=2.5
$$

Live Load Bedding Facłor

Table 12.10.4.3.2c-1

Pipe Diameter, in	$<2 \mathrm{ft}$	$\geq 2 \mathrm{ft}$
	3.2	2.4
18	3.2	2.4
24	3.2	2.4
30 and larger	2.2	2.2

$$
\mathrm{B}_{\mathrm{FLL}}=2.2
$$

Find D-load

$$
D=\left(\frac{12}{S_{i}}\right)\left(\frac{W_{E}+W_{F}}{B_{F E}}+\frac{W_{L}}{B_{F L L}}\right)
$$

(12.10.4.3.1-1)

Application of Factor of Safety

- Design is based on 0.01 inch crack, so use a factor of safety of 1.0.

SELECTION OF ELLIPTICAL PIPE STRENGTH FOR A TYPE 2 INSTALLATION

$\mathrm{D}_{0.01}=\left[\frac{882 \mathrm{lbs} / \mathrm{ft}+636 \mathrm{lbs} / \mathrm{ft}}{2.5}+\frac{5801 \mathrm{lbs} / \mathrm{ft}}{2.2}\right] \times \frac{12}{53 \mathrm{in}}$.

$\mathrm{D}_{0.01}=735 \mathrm{lbs} /$ linear ft/ft of diameter

Elliptical Pipe Classes (ASTM C 507)

- Class HE-A - $600 \mathrm{lbs} / \mathrm{ft} / \mathrm{ft}$
- Class HE-1 - $800 \mathrm{lbs} / \mathrm{ft} / \mathrm{ft}$
- Class HE-II - $1000 \mathrm{lbs} / \mathrm{ft} / \mathrm{ft}$
- Class HE-III - 1350 lbs/ft/ft
- Class HE-IV - 2000 lbs/ft/ft

Tandem Axle Live Load

The End

