Refer to the Bridge Design Competition Website for Important Dates

1. **Objective**: The objective of the Delaware Bridge Design Competition is to design and build a model deck arch truss bridge that will be tested for a strength-to-weight ratio using balsa wood. Student teams from across the state of Delaware will compete against one another, with grade levels ranging from 9th to 12th. Interested teams should fill out the application form provided on the DelDOT Bridge Design Competition website and submit it prior to the deadline. Teams are required to submit a proposal explaining their design process and experiences during the project. Drawings detailing each team’s design should also be submitted with the proposal. On the day of the competition, teams will present a 10 minute PowerPoint presentation and structurally test their bridges against teams throughout the state to determine the winning bridge. A Challenge Entry Kit will be provided to each team to begin their project. Only materials included in the kit supplied can be used in the construction of the bridge. The material kit will be shipped by the specified date on the bridge design competition web page. The competition objectives are for students to:
 a) Design a Balsa Wood Deck Arch Truss Bridge (Specifications in section 5 of this guideline) using the least amount of materials to support the desired load.
 b) Effectively communicate their analysis and design processes through a report portfolio. Report should include design drawings using Bentley PowerDraft CAD software.
 c) Give an oral presentation on the final design.

Each bridge will be checked for design according to the rules. The bridges will be weighed and strength tested during the competition to calculate strength-to-weight ratio.

2. **Eligibility**: Students eligible range from 9th – 12th grade and should attend a school located in Delaware. The Delaware Bridge Design Competition is designed for teams of three (3) students to participate. While schools should strive to create teams of 3 students, the Delaware Bridge Design Competition is an inclusive event and will accommodate teams of 2 or 4 as well. Teams can be no larger than 4 students.

3. **The Challenge**: An engineer’s job is to not only design a safe bridge to carry required loads, but also to make sure that it is cost effective (least amount of materials used to achieve the desired load). To simulate this process, teams will use the following strength-to-weight ratio calculation to develop a bridge that carries a high load capacity relative to the bridge weight. Strength to weight ratio is determined by dividing the maximum load carried by the weight of bridge.

 Example: Assume a team constructs a bridge with the following characteristics
 - Maximum load = 120 pounds (lb.)
• Unit conversion: 1 pound = 454 grams (g)

 \((120\text{lb.} \times 454\text{g/lb.}) = 54,480\text{g}\)

• Bridge weight = 20g

4. **Materials:** Provided in kit

 a) Balsa Wood
 b) Ruler
 c) Long Pins
 d) Drafting Paper
 e) S-Hook
 f) U-Bolt Bracket
 g) Wax Paper
 h) Model Smart 3D Software
 i) Wood Glue
 j) Painter’s Bucket
 k) Measuring Cup
 l) Safety Cutters
 m) Safety Manual
 n) Bridge Builder CD
 o) Teacher’s Guide CD
 p) MicroStation V8i Software

5. **Bridge Specifications:** Students will design and build a model deck arch truss bridge based on the following specifications.

 a) The materials provided in the kit are the ONLY materials to be used when building the bridge structure. Any modifications to the structural properties of the balsa wood or using different glue than provided will result in judges recording zero (0) weight held.
 b) The instrument used for testing will be the Pitsco Structures Testing instrument as seen in figure 2 below.
 c) Lamination shall be permitted one layer thick, in either direction, as shown in the picture below. Lamination is gluing two members along their length. Bridges decks will NOT be permitted and will result in judges recording a zero (0) for weight held.
 d) Connections can be butt joints, miter joints, or notched joints. Lap splices are permitted, but no greater than 1/4 of an inch.
 e) End to end, the length of the entire bridge must be 14 inches.
 f) Maximum width of the bridge shall be no more than 4.5 inches.
 g) A block of wood that is 2 inches long by 2 inches wide by 1 inch high must be able to be pushed across the bridge deck (a solid bridge deck is not allowed).
 h) Tester supports will be placed at 14 inches on center. Support dimensions are shown below in figure 4.
 i) The bridge is allowed to touch the tester support surfaces shown by the “*” in Figure 2. Bridges are not allowed to touch any portion of the tester not denoted by “*” in Figure 2.
 j) The area where the bridge will be loaded must have at least a 3/4 inch hole in mid-span to allow a 5/8 inch testing rod to pass through and attach to a 2” x 2” block of wood for
strength testing as seen in the picture and the diagram below. The rod must be able to pass through the full height of the bridge. Diagrams do not represent the required design and shall only be used for dimension reference.

k) In real world applications, bridges should not be permitted to deflect more than a tolerated amount, even if the structure itself does not fail. This is to be the same for each team’s model bridge. The tolerated deflection during testing for each model bridge is ½ inch. This will also allow the bridges to be fully loaded to failure since the specified Pitsco tester can only load to a certain deflection. If a model bridge deflects past the required deflection, the loading read at the max deflection will be recorded for scoring.

Figure 1. Lamination

Figure 2. Pitsco Tester
(Not representative of the bridge type)

Figure 3. Tester Configuration Detail

Figure 4. Support Detail
PERFORMANCE (40% of the total score) – Achievement of performance goals and stability of construction. Bridges will be weighed and then tested on the structural tester. Results will be used to calculate strength-to-weight ratio. Any bridge not meeting the specifications in section 5 will result in a disqualification in the performance section and a score of zero (0) points. Please securely label your bridge with your team name. For judging purposes, we may not be able to award points for the Bridge Testing if we cannot identify your team’s bridge. Bridge performance will be given a maximum of 100 points:

Scores on the strength-to-weight ratio will based on the following equation: \((\text{Ratio}_i / \text{Ratio}_{\text{Highest}}) \times (100 \text{ points})\)

- \(\text{Ratio}_i\) = The strength-to-weight ratio of the team being judged
- \(\text{Ratio}_{\text{Highest}}\) = The highest strength-to-weight ratio recorded amongst all teams

Example:

Team 1 – Strength-to-Weight Ratio = 3000; \((3000 / 3000) \times (100) = 100 \text{ Points}\)

Team 2 – Strength-to-Weight Ratio = 2000; \((2000 / 3000) \times (100) = 66.67 \text{ Points}\)

Team 3 – Strength-to-Weight Ratio = 1000; \((1000 / 3000) \times (100) = 33.33 \text{ Points}\)

6. **Proposal Specifications:** The information below gives an indication of what the judges are looking for in each section.

 a) **Proposal Format:** The written proposal should be typed, double-spaced using size 12 Times New Roman font on 8.5 x 11 paper with all pages numbered, and 1 inch margins all around. Sections must be in order of the outline below.

 i. **Title Page** – Include name of competition, type of bridge, team name, team logo (each team must have a unique logo), name of the school or organization, names of students, name of teacher or advisor.

 ii. **Table of Contents.**

 iii. **Summary of Proposal** – Clearly and concisely stated. (At least ½ page, no more than one page).

 iv. **Introduction to Team** – Indicate the team name, team members as well as the background of each member

 v. **Body** – The main part of the report.

 i. Label/Name the final model bridge. This is important and will help distinguish between other team’s bridges during testing

 ii. Explain the scientific principles behind your design.

 iii. Describe the design and engineering challenges you encountered.

 iv. Include graphs and/or charts representing bridge testing and any supporting calculations.

 v. Include at least five (5) screen-shots of modeling software used.

 vi. Include at least five (5) pictures. Picture will include at least one of each of the following:

 a. Team working during bridge design.

 b. Team working during construction.

 c. Constructed bridge.
vii. Explain how you tested your design, and the improvements this led you to make.

viii. Describe the construction challenges that you encountered in building your bridge and how you solved these problems.

VI. Conclusions – Include recommendations about construction and design changes you would consider for future bridges. Summarize the overall success of the project through design and construction. Discuss what the team learned throughout the project.

VII. Acknowledgments – List the names of the adults who assisted you in the project with a brief description of what they did. Include a certification, signed by all student team members and adults assisting, stating that: “We hereby certify that the majority of the ideas, design, and work was originated and performed by the students, with limited assistance by adults, as described above.”

VIII. Bibliography – List all references used, using MLA formatting.

IX. Appendices

 i. Daily Journal and Schedule: Include progress reports of day-to-day work on project, including date, performance, and comments from each team member. Show on a timeline, or similar method, how you scheduled your project. Include brief records of meetings, telling how you managed the schedule.

 b) Timeliness: Proposals received after the deadline will not be accepted.

PROPOSAL (30% of the total score) – Proposal reports will be evaluated on formatting, presentation, and design and construction. Reports should be well thought out and provide substantial information on the design process. See included Proposal Scoring Rubric for scoring assessment. This is a helpful guide to follow while formulating the proposal.

Each team is required to submit either an electronic copy of their proposal or two (2) hard copies of their proposal to Nicholas Dean, a Supervising Engineer for the Delaware Department of Transportation. Electronic copies of the proposal are preferred. Do not send the bridge itself. All entries become the property of Delaware Department of Transportation and will not be returned.

7. Design Drawing Specifications: Computer Aided Drafting (CAD) is used to convey an engineer’s plan to stakeholders in order to produce safe, efficient, and cost effective projects. Bentley PowerDraft CAD is provided at no cost to all participants. Refer to the website for download instructions and how to use video tutorials. All design drawings required for the competition must be created using applicable CAD software and be presented on one of the following sheet sizes:

 • 8 ½” x 11”
 • 11” x 17”
 • 22” x 34”

It is the responsibility of the competitors to ensure the design drawings are easily read and understood. Judges will examine each entry to make sure it fits the specifications given in the
rules. Each team’s drawings must resemble their balsa wood bridge model entered in the competition.

Specifications

a) Three (3) views must be provided:
 I. Plan (top view looking down on bridge)
 II. Section (vertical slice through center of the bridge)
 III. Elevation (side view of bridge)

DESIGN DRAWINGS (15% of the total score) – CAD drawings of the bridge showcases the team’s use of the software. Drawings will be given a maximum of 100 points. See included Design Drawings rubric for scoring assessment. This is a helpful guide to follow while formulating the drawings.

8. Oral Presentation: Teams attending the DelDOT Bridge Design Competition will present to a panel of judges comprised of various engineers. Each team will be expected to make a PowerPoint presentation and be able to answer questions from the panel of judges about their entry. Supporting materials may be presented to the judges.

ORAL PRESENTATION (15% of the total score) – Teams will present a 10 minute PowerPoint presentation (a deduction is assessed if over or under 10 minutes). A 5 minute questionnaire session will follow the presentation, where judges will ask questions pertaining to each team’s project. See included Oral PowerPoint Presentation rubric for scoring assessment. This is a helpful guide to follow while formulating the presentation.
PREPARING FOR COMPETITION

Form a team of interested students or friends. Discuss the challenges and design specifications. Teams are limited to only three (3) students. Each team must have at least one teacher or other adult to help and advise, though a single adult may be advisor to more than one team.

Study the rules. The individual challenge documents and the grading criteria will give important information, which must be followed if your team is to achieve the best results. Failure to adhere to the rules could lead to penalties, or even disqualification. If any of the information is not clear, please contact for additional help.

Plan the timing of the project. Ensure that everyone in the team knows the important dates for submission of the written report, and recognizes that this means that all major development work should be finished before these dates.

Keep records of meetings and working drawings carefully, and give members of the team responsibility for different sections of the final report.

Notes to Adults: It is extremely important that the work on all phases of the project is to be done by the students. Adult assistance is to be limited to:

- Mentoring
- Basic guidance of the students
- Teaching engineering, mathematical and scientific principles applicable to the project
- Guiding students in research
- Assisting in the production of the report and preparation of the drawings
- Overseeing the manufacturing stages of the project

Guidance should be in the form of asking questions, (leading questions if necessary) to promote creative thinking by the students to identify the scientific and engineering principles involved. Encourage students to consult creditable web sites and other resources to help with the project. Encourage students to test and improve their designs. A good way to begin is for each student to design and/or construct a rough prototype. Test it and make improvements.
Proposal Scoring
Delaware Bridge Design Competition

Proposal Format
☐ Typed (1 point)
☐ Double Spaced (1 point)
☐ 12 Point Font (Times New Roman) (1 point)
☐ All pages on 8.5 x 11 paper (1 point)
☐ Information is in the proper order (1 point)
☐ All pages are numbered (1 point)
☐ Style and presentation (3 points)
☐ Mechanics (3 points)
☐ Visuals (3 points)

Score _____ / 15 points

Proposal Presentation
☐ Title page (1 point)
☐ Table of Contents (1 point)
☐ Summary (no more than 2 pages) (5 points)
☐ Introduction (1 points)
☐ Body
 ☐ Sections identified (1 points)
 ☐ Scientific principles of the design (10 points)
 ☐ Design and engineering challenges (10 points)
 ☐ Modeling software screenshots (3 points)
 ☐ Bridge name (2 points)
 ☐ Graphs and Calculations (5 points)
 ☐ Photographs (5 points)
 ☐ Testing and improvements (5 points)
 ☐ Solving challenges (5 points)
☐ Conclusion
 ☐ Recommendations (2 points)
 ☐ Success of the project (2 points)
 ☐ Lessons learned (2 points)
☐ Acknowledgements
 ☐ Adults involved (1 points)
 ☐ Description of what the adults did (1 points)
 ☐ Certification and signatures (2 points)
☐ Bibliography (1 points)
☐ Appendices
 ☐ Daily Journals and scheduling (must be legible) (20 points)

Score _____ / 85 points

TOTAL SCORE: _____ /100 Points
Design Drawings Scoring
Delaware Bridge Design Competition

Required Detail Views
- **Plan View** (10 points)
- **Section View** (10 points)
- **Elevation View** (10 points)

Score____/ 30 Points

Technical Content for each Detail View
- **Title of View** (6 points)
- **Dimensions/Text** (12 points)
- **Units** (6 points)

Score____/ 24 Points

Detail Drawing Formatting for all Sheets*
- **Proper Page Sized Used** (6 points)
- **Sheet Border** (6 points)
- **Team Name** (6 points)
- **Team Members** (6 points)
- **Date Drawing was Completed** (6 points)
- **Scale** (6 points)

Score____/ 36 Points

- **Overall Quality** (10 points)

Score____/ 10 points

TOTAL SCORE:____/100 Points

*All three views (Plan, Section, and Elevation) may be placed on one Sheet
Oral PowerPoint Presentation

Team will present to a panel of judges comprised of engineers from DelDOT. Each team is expected to make a PowerPoint presentation and be able to answer questions for them at panel of judges at the conclusion of their presentation. Each presentation should be a maximum of 10 minutes with an additional 5 minutes allotted for question at the end. A deduction will be assessed for presentations not meeting the 10-minute requirement. A rubric scoring rubric has been provided for the presentation as a guide to assist in preparation.

Scoring:
Each category will be judged on a scale from 0 to 20 points.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
<th>0</th>
<th>Sub-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>Covers topic in-depth with details and examples. Subject knowledge is excellent</td>
<td>Includes essential knowledge about the topic. Subject knowledge appears to be good.</td>
<td>Includes essential information about the topic but there are 1-2 factual errors</td>
<td>Content is minimal or there are several factual errors</td>
<td>Did not fulfill requirements</td>
<td>_____/20</td>
</tr>
<tr>
<td>Mechanics</td>
<td>No misspellings or grammatical errors</td>
<td>Three or fewer misspellings and/or mechanical errors</td>
<td>Four misspellings and/or grammatical errors</td>
<td>More than 4 errors in spelling or grammar</td>
<td>Did not fulfill requirements</td>
<td>_____/20</td>
</tr>
<tr>
<td>Organization</td>
<td>Content is well organized with related material grouped together</td>
<td>Content is logically organized for the most part</td>
<td>Overall organization is flawed</td>
<td>There was little clear or logical organizational structure</td>
<td>Did not fulfill requirements</td>
<td>_____/20</td>
</tr>
<tr>
<td>Presentation</td>
<td>Interesting, well-rehearsed with smooth delivery that holds audience attention</td>
<td>Relatively interesting, rehearsed with a fairly smooth delivery that usually holds audience attention</td>
<td>Delivery not smooth, but able to hold audience attention most of the time</td>
<td>Delivery not smooth and audience attention lost</td>
<td>Did not fulfill requirements</td>
<td>_____/20</td>
</tr>
<tr>
<td>Attractiveness</td>
<td>Makes excellent use of font, color, graphics, effects, etc. to enhance the presentation</td>
<td>Makes good use of font, color, graphics, effects, etc. to enhance presentation</td>
<td>Makes use of font, color, graphics, effects, etc. but occasionally these detract from the presentation content</td>
<td>Use of font, color, graphics, effects etc. but these often distract from the presentation content</td>
<td>Did not fulfill requirements</td>
<td>_____/20</td>
</tr>
</tbody>
</table>

Over 10 Minutes: (-2 pts per minute)

Total Sub-Score

Total Score
Delaware Bridge Design Competition
Suggestions and Helpful Hints

1. Students should be prepared for questions at the end of the presentation. These questions may be concentrated in the following topics. However, note that the judges are free to ask any question about any topic. Therefore, each team should be prepared.
 a) Choice of design
 b) Civil engineering careers related to bridges
 c) Safety
 d) Impacts of bridges
 e) Lessons learned

2. Stay organized and keep track of time limits.

3. If you have a question, don’t be afraid to ask. Please contact:
 a) Nicholas Dean at Nicholas.Dean@delaware.gov
 b) Please CC the following individuals:
 • Paul Huhn at Paul.Huhn@delaware.gov
 • Marc “Gus” Toussaint at Marc.Toussaint@delaware.gov
 • Sean Weaver at Sean.Weaver@delaware.gov

4. Contact your mentors. They will answer many of your questions.

5. Check out other bridges in your area or around the world.

6. Make sure to research topics and concepts.