BIKE RACK DETAILS

5 BIKES
W = 36" (915)

7 BIKES
W = 67" (1699)

9 BIKES
W = 87" (2210)

11 BIKES
W = 111" (2819)

BICYCLE RACK

SLOPE TO DRAIN

OUTER EDGE OF CONCRETE FOOTING TO BE FLUSH WITH SURROUNDING GRADE (TYP.)

CONCRETE (TYP.)

STONE (TYP.)

24" (610) MIN.

2 3/8 " (60) DIA. TUBING

4 REBAR 6" (150) LONG

6" (150) LONG #4 REBAR

10" (255)

6" (150)

24" (610) (TYP.)

3/4" (19) (TYP.)

2 3/8 " (60) DIA. TUBING

SHT. 1

DELTAAR
DEPARTMENT OF TRANSPORTATION

BIKE RACK DETAILS

SHT. 1 OF 1

APPROVED

RECOMMENDED

09/27/2004
WOOD RAIL FENCE DETAILS

1. ALL RAIL JOINTS SHALL BE CENTERED AT THE POSTS.
2. ALL JOINTS SHALL BE ATTACHED WITH 3 - 12d NAILS AND TWO ADJACENT RAILS SHALL NOT END ON THE SAME POST.
3. RAILS SHALL BE FLUSH TO THE POSTS AT THE END POSTS.

NOTES:

SECTION A-A

WATER TOP AT 3% SLOPE

POSTS 8' (2.4m) O.C. ON STRAIGHT RUNS, 4' (1.2m) O.C. AROUND CURVES

PATH

PATH

4" (100) (TYP.)

CLASS B CONCRETE

SLOPE TO DRAIN

24" (610) MIN.

24" (610) MIN.

6" (150) (TYP.) MAX

SEE NOTE 2

TYPICAL JOINT DETAIL

ATTACH WITH 4-12d HOT DIP GALVANIZED RING NAILS (TYP.)

4" (100) x 4" (100) (NOMINAL) TREATED POSTS (TYP.)

4" (100) x 4" (100) (NOMINAL) TREATED RAILS (TYP.)

1½" (32) x 6" (150) (NOMINAL) TREATED RAILS (TYP.)

NOTES:

1. ALL RAIL JOINTS SHALL BE CENTERED AT THE POSTS.
2. ALL JOINTS SHALL BE ATTACHED WITH 3 - 12d NAILS AND TWO ADJACENT RAILS SHALL NOT END ON THE SAME POST.
3. RAILS SHALL BE FLUSH TO THE POSTS AT THE END POSTS.
4" (100) x 8" (200) RUNNING BOND PATTERN

4" (100) x 8" (200) HERRINGBONE PATTERN

NOTES:
1. Actual pattern to be used shall be specified on the plans. Color is to be "brick red" unless otherwise noted on the plans.
2. Materials and finish box vary depending on plans.
3. For crosswalk applications, 8" (200) wide lines should be placed on both sides.
4. The patterns above are the preferred patterns available for sidewalk or crosswalk applications.

BRICK PAVER SIDEWALK DETAIL

NOTES:
1. All pavers are to be "brick red" unless otherwise specified on the plans. The pattern shall be specified on the plans.
2. Expansion joint may be needed on non-curb side of brick paver sidewalk if this is against building or other confining feature.
SLAB PLAN (WITH DOWEL AND TIE LOCATIONS)

DELAWARE
DEPARTMENT OF TRANSPORTATION

P.C.C. PAVEMENT

STANDARD NO. P-1 (2001) SH/T. 1 OF 5

APPROVED

RECOMMENDED

NOTES:
1. TRANSVERSE JOINTS ARE PERPENDICULAR TO THE CENTERLINE OF THE PAVEMENT WHEN THE PAVEMENT IS STRAIGHT.
2. TRANSVERSE JOINTS ARE PERPENDICULAR TO A TANGENT LINE TO THE OUTSIDE ARC OF THE PAVEMENT WHEN THE PAVEMENT IS CURVED.
3. ALIGN THE TRANSVERSE JOINTS FOR ALL ADJACENT SLABS WITH EACH OTHER.
4. ABRUPT CHANGES IN PAVEMENT WIDTH MAY OCCUR ONLY AT THE TRANSVERSE JOINT LINE; LONGITUDINAL JOINTS SHALL BE CONTINUOUS WHENEVER POSSIBLE.
5. LONGITUDINAL JOINTS SHOULD NOT BE LOCATED WITHIN PROPOSED WHEEL PATHS. THE WHEEL PATH IS GENERALLY LOCATED 2' (600MM) INSIDE OF THE LANE EDGELINE OR CENTERLINE.
NOTES:
1. AS DIMENSIONED, THE WIDTH OF THE TRANSVERSE SEALANT RESERVOIR IS APPLICABLE WHEN THE TEMPERATURE OF THE PAVEMENT SURFACE IS BETWEEN 60°F (16°C) AND 80°F (27°C). WHEN THE TEMPERATURE IS BELOW 60°F (16°C), THE SEALANT RESERVOIR SHALL BE CUT 0.16" (4) WIDER. WHEN THE TEMPERATURE IS ABOVE 80°F (27°C), THE SEALANT RESERVOIR SHALL BE CUT 0.40" NARROWER.
2. "T" REFERS TO THE ACTUAL CONSTRUCTED SLAB THICKNESS.
3. TOLERANCE ON ALL JOINT SEALANT DETAIL DIMENSIONS SHOWN WITHOUT RANGES SHALL BE PLUS 0.12" (30), MINUS 0.10".
4. THE TOP EDGES OF THE CONTACT SURFACES OF THE SEALANT MATERIAL ON BOTH SIDES OF THE JOINT RESERVOIR SHALL BE AT THE SAME ELEVATION.
5. TRANSVERSE JOINT MATERIAL SHALL BE PLACED BEFORE LONGITUDINAL JOINT MATERIAL; THE TRANSVERSE JOINT MATERIAL SHALL BE CONTINUOUS FOR THE FULL WIDTH OF ALL ADJACENT P.C.C. PAVEMENT SLABS.
6. LONGITUDINAL JOINT MATERIAL SHALL BE PLACED WITHOUT GAPS WHENEVER INTERRUPTED BY THE TRANSVERSE JOINT MATERIAL.
7. TRANSVERSE JOINT SEAL TO BE RECESSED 0.50" TO 0.75" BELOW THE TOP OF THE SLAB.
8. A 45° CHAMFER SHALL BE CUT 0.30" TO 0.45" DEEP AT THE TOP OF THE SLAB ALONG BOTH SIDES OF THE TRANSVERSE SEALANT RESERVOIR.
9. THE TOP EDGES OF THE COMPRESSION SEAL SHALL BE IN FULL CONTACT WITH THE SLAB SIDES.

JOINT AND SEALANT DETAILS
Dowel & Tie Bar Placement Tolerances

Horizontal Translation

Vertical Translation

Horizontal Rotation

Vertical Rotation

DELTADEPARTMENT OF TRANSPORTATION

P.C.C. Pavement

Standard No. P-1 (2001) SHT. 5 OF 5

Approved

Recommended

04/18/2001
PLAN

- Proposed locations for transverse joints shall exactly match the alignment of the final existing or relocated transverse joints in all immediately adjacent lanes.

NOTES:
1. When repairing existing transverse joints, the patch shall extend a minimum of 24" (600mm) through the existing joint, which will relocate the joint.
2. Proposed locations for transverse joints, when not aligned with the final expected transverse joint locations in the immediately adjacent lanes, shall be offset a minimum of 24" (600mm) from the aforementioned joints.
3. The longitudinal joint alignment shall be straight and continuous through the repaired area.
P.C.C. PAVEMENT PATCHING

SECTION A-A

SECTION B-B

SECTION C-C

FULL DEPTH PATCH

SEALANT RESERVOIR
SEE SHEET 3

SEALANT RESERVOIR
SEE SHEET 3

TOP OF SLAB
0.5L

0.5T

DOWEL

DOWEL

TOP OF SLAB
0.5L

0.5T

DOWEL

SECTION A-A

TRANSVERSE CONSTRUCTION JOINT USED FOR JOINTS BETWEEN EXISTING PAVEMENT AND PATCH

EXIST. HOT-MIX OVER P.C.C. PAVEMENT

EXIST. P.C.C. PAVEMENT

ADDITIONAL P.C.C. PATCH REQUIRED FOR UNDERCUT AREAS

ADDITIONAL P.C.C. PATCH REQUIRED FOR UNDERCUT AREAS

TRANSVERSE SAW-CUT USED FOR JOINTS LOCATED WITHIN THE PATCH

FULL DEPTH PATCH VARIES 4" (100) - 8" (200)

VARIES 4" (100) - 8" (200)

12" (300)

6" (150) MAX

6" (150) MAX

DELTAIR
DEPARTMENT OF TRANSPORTATION

P.C.C. PAVEMENT PATCHING

APPROVED

RECOMMENDED

DATE

DATE

Curtiss Wright 11/05

M. Off 11/05
SEALANT DETAIL - LONGITUDINAL JOINT

SEALANT DETAIL - TRANSVERSE SAW-CUT JOINT

SEALANT DETAIL - TRANSVERSE CONSTRUCTION JOINT

DOWEL BAR

NOTES:
1. AS DIMENED, THE WIDTH OF THE TRANSVERSE SEALANT RESERVOIR IS APPLICABLE WHEN THE TEMPERATURE OF THE PAVEMENT SURFACE IS BETWEEN 60°F (16°C) AND 80°F (27°C). WHEN THE TEMPERATURE IS BELOW 60°F (16°C), THE SEALANT RESERVOIR SHALL BE CUT \frac{1}{8}" WIDER.
2. "T" REFERS TO THE EXISTING "AS-BUILT" SLAB THICKNESS.
3. TOLERANCE ON ALL JOINT SEALANT DETAIL DIMENSIONS SHOWN WITHOUT HANES SHALL BE PLUS \frac{1}{2}" MINUS \frac{1}{8}".
4. THE TOP EDGES OF THE CONTACT SURFACES OF THE SEALANT MATERIAL ON BOTH SIDES OF THE JOINT RESERVOIR SHALL BE AT THE SAME ELEVATION.

FULL DEPTH PATCH

DELARTMORE
DEPARTMENT OF TRANSPORTATION
PCC PAVEMENT PATCHING
APPROVED
P Lt RECOMMENDED
DATE DEC 11/05
DATE DEC 12/05
DATE DEC 13/05
DOWEL & TIE BAR PLACEMENT TOLERANCES

FULL DEPTH PATCH
NOTE: CLOSED CELL POLYETHYLENE FOAM SHALL BE THE SAME WIDTH AS THE JOINT AND 1/4" (6.35) IN DEPTH. AFTER THE CONCRETE IN THE REPAIR AREA HAS ACHIEVED THE SPECIFIED STRENGTH, THE FOAM SHALL BE REMOVED AND REPLACED WITH BACKER ROD AND HOT-POUR SEALANT MEETING ALL APPLICABLE STANDARD DETAILS AND SPECIFICATIONS.
NOTES:
1. TYPE 1 CONDUIT JUNCTION WELL SHALL BE PRECAST CONCRETE. AT LEAST ONE HOLE IN PRECAST WELLS WILL BE OF A 5/8" DIAMETER COMPLETELY THROUGH THE WALL. UNUSED HOLES SHALL BE PLUGGED.
2. TYPE 2 AND TYPE 3 CONDUIT JUNCTION WELLS SHALL BE BRICK AND WALL CONFORM TO STANDARD SPECIFICATIONS FOR BRICK MASONRY. JOINTS SHALL BE CONCRETE TYPE. TYPE 2 WALLS WILL BE A NOMINAL 4" THICK. TYPE 3 WALLS WILL BE A NOMINAL 8" THICK.
3. TYPE 2 AND TYPE 3 CONDUIT JUNCTION WELLS SHALL NOT BE PLACED UNDER ANY TYPE OF PAVEMENT.
4. ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC., WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE SAME. INSTALLATION IN UNEPAVED AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO DRAIN AWAY FROM CONDUIT JUNCTION WELL.
NOTES:
1. **TYPE 4 CONDUIT JUNCTION WELL SHALL BE PRECAST CONCRETE. AT LEAST ONE HOLE IN PRECAST WELLS WILL BE OF A 5"(125) DIAMETER COMPLETELY THROUGH THE WALL. UNUSED HOLES SHALL BE PLUGGED.**

2. **ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC. WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE SAME. INSTALLATION IN UNPAVED AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO DRAIN AWAY FROM CONDUIT JUNCTION WELL.**
NOTES

1. A TYPE 5 CONDUIT JUNCTION WELL SHALL BE PRECAST CONCRETE. AT LEAST ONE HOLE IN PRECAST WELLS WILL BE OF A 5" (125) DIAMETER COMPLETELY THROUGH THE WALL. UNUSED HOLES SHALL BE PLUGGED.

2. ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC., WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE SAME. INSTALLATION IN UNEVEN AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO DRAIN AWAY FROM CONDUIT JUNCTION WELL.
CONCRETE CABINET BASE

CABINET BASES (TYPES 'M' & 'P')

PLAN VIEW

GROUND RODS

EXPANSION BOLT (6)

GROUND RODS 3/4" x 12" (32"") (35)

GROUND RODS 3/4" x 16" (41"")

GROUND RODS 3/4" x 19" (48"")

GROUND RODS 3/4" x 15" (38"")

GROUND RODS 3/4" x 7" (18"")

EXPANSION BOLT (6)

PLAN SYMBOL
ROUND BASE

SQUARE BASE

NOTE: BASE DEPENDENT ON POLE AND EQUIPMENT TO BE ATTACHED.

PLAN SYMBOL

DELAWARE
DEPARTMENT OF TRANSPORTATION

POLE BASES

STANDARD NO. T-6 (2002)
SHT. 1 OF 3

APPROVED

RECOMMENDED

06/1/2002
POLE BASE DATA CHART

<table>
<thead>
<tr>
<th>POLE BASE TYPE</th>
<th>DIAMETER</th>
<th>DEPTH *</th>
<th>#4 M13 HORIZONTAL REINFORCING BARS</th>
<th>#9 M25 VERTICAL REINFORCING BARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36" (915)</td>
<td>7" (250)</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>36" (915)</td>
<td>10" (305)</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>2A</td>
<td>48" (1220)</td>
<td>8" (200)</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>2B</td>
<td>60" (1525)</td>
<td>7" (250)</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>48" (1220)</td>
<td>10" (305)</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>3A</td>
<td>60" (1525)</td>
<td>9" (225)</td>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>3B</td>
<td>72" (1830)</td>
<td>7" (250)</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>24" (600)</td>
<td>2"-4" (50-100)</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>5</td>
<td>36" (915)</td>
<td>6" (150)</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>24" (600)</td>
<td>6" (150)</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>48" (1220)</td>
<td>3"-4" (75-100)</td>
<td>7</td>
<td>B</td>
</tr>
</tbody>
</table>

* - ADDITIONAL DEPTH FOR POLE BASE EXTENSION, IF REQUIRED, TO BE DETERMINED BY TRAFFIC ENGINEERING AND MANAGEMENT TEAM/FIELD REPRESENTATIVE.

ANCHOR BOLT DATA CHART AND DETAILS

Note: Anchor bolts for pole base type 7 shall conform to the CCTV pole manufacturer's specifications.

PLAN SYMBOL

- **G** = GALVANIZED PORTION
- **T** = THREAD LENGTH
- **L** = LENGTH OF ROD
- **H** = HEIGHT OF ROD

POLE BASES

<table>
<thead>
<tr>
<th>STANDARD NO.</th>
<th>T-5 (2002)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>APPROVED</th>
<th>RECOMMENDED</th>
</tr>
</thead>
</table>

DELAWARE DEPARTMENT OF TRANSPORTATION

<table>
<thead>
<tr>
<th>SHT.</th>
<th>3 OF 3</th>
</tr>
</thead>
</table>

01/31/2002
NOTES:
1. UNDERGROUND CONDUIT ENDS SHALL BE CAPPED WITH A GALVANIZED THREADED CONDUIT PLUG UNLESS CONNECTED TO AN EXISTING CONDUIT.
2. PLACE 2 EACH 6" (150) X 1/2" (.13) P.V.C., SCHEDULE 40 (TYP) VENTS IN THE GROUT AS DIRECTED IN THE FIELD BY THE ENGINEER.
NOTES:
1. STUB POST TO BE SUPPLIED BY THE DEPARTMENTS TRAFFIC, ENGINEERING, AND MANAGEMENT SECTION.

SECTION A-A

PLAN SYMBOL

DELAWARE
DEPARTMENT OF TRANSPORTATION

SIGN FOUNDATION

STANDARD NO. T-7 (2002) SHT. 1 OF 1 APPROVED RECOMMENDED

01/31/2002
NOTES:
1. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING THE CONDUIT AGAINST ANY POSSIBLE DAMAGE IN PAVING OPERATIONS.
2. THE WEATHERPROOF FITTING SHALL CONSIST OF A GALVANIZED 3/8" CB1 COUPLING CONTAINING A STEEL THREADED REDUCING BUSHING 3/8" CB1 TO 3/4" CB1 AND A 3/4" CB1 WATERTIGHT CONNECTOR FOR SERVICE ENTRANCE CABLE.
3. THE LEAD-IN WIRE SHALL BE RUN THROUGH THE RUBBER OF THE WEATHERPROOF FITTING.

DETAIL A - TYPICAL INSTALLATION UNDER INTEGRAL CURB AND GUTTER

DETAIL B - TYPICAL INSTALLATION UNDER CURBING

DETAIL C - TYPICAL INSTALLATION WITHOUT CURBING

DE LAWARE DEPARTMENT OF TRANSPORTATION

LOOP DETECTOR TO CONDUIT JUNCTION WELL CONNECTION

APPROVED

RECOMMENDED

01/31/2002
NOTES:
1. SAW CUTS FOR WIRE SLOT CONSTRUCTION SHALL BE EXTENDED BEYOND THE CORNERS SO THAT THE SLOT IS FULL DEPTH AT TURN POINTS. A FORTY-FIVE (45) DEGREE ANGLE SHALL BE CUT 12" (300) BACK FROM THE POINT OF THE EXTENDED CORNER.
2. THE DIAGONAL CUT SHALL BE STOPPED APPROXIMATELY 2" (50) FROM THE CORNER TO PREVENT THE TRIANGULAR PORTION OF THE PAVEMENT FROM BREAKING.
3. A MAXIMUM OF TWO LOOP DETECTORS CAN BE SPLICED TO ONE LEAD-IN CABLE. THE DETAIL ILLUSTRATES THE METHOD OF SPLICING TWO LOOP DETECTORS (LOOP #1 AND LOOP #2) TO A LEAD-IN CABLE.
4. LOOP DETECTOR SHALL BE CENTERED IN TRAVEL LANE.
NOTES:

1. Saw cuts for wire slot construction shall be extended beyond the corners so that the slot is full depth at turn points. A forty-five (45) degree angle shall be cut 1' (0.3m) back from the point of the extended corner.

2. The diagonal cut shall be stopped approximately 2" (50) from the corner to prevent the triangular portion of the pavement from breaking.

3. A maximum of two loop detectors can be spliced to one lead-in cable. The detail illustrates the method of splicing two loop detectors (Loop #1 and Loop #2) to a lead-in cable.

4. Loop detector shall be centered in travel lane.

SECTION A - A

SECTION B - B

DELAWARE DEPARTMENT OF TRANSPORTATION

RECOMMENDED

APPROVED
INTERMEDIATE

SEE DETAIL "A"

COORDINATION CABLE

GALVANIZED 5/16" NUTS

GALVANIZED 1/2" CENTER THRU-BOLT

WOOD POLE

SIDE VIEW

DETAIL "A"

GALVANIZED 5/16" CENTER THRU-BOLT

GALVANIZED 1/2" CLAMP BOLT

GALVANIZED 1/2" NUT

MESSENGER WIRE

FRONT VIEW

MESSENGER CLAMP

COORDINATION CABLE

GUARDIAN CLAMP

LASHING WIRE

GUY HOOK

WOOD POLE

TOP VIEW

PLAN SYMBOL

COORDINATION CABLE

GUARDIAN CLAMP

LASHING WIRE

WASHER

GALVANIZED 1/2" CLAMP BOLT
DELAWARE
DEPARTMENT OF TRANSPORTATION

ANGULAR INTERMEDIATE MESSENGER WIRE ATTACHMENT

SERVICE WEDGE CLAMP
CABLE SPACER
MESSENGER CLAMP
COORDINATION CABLE
MESSENGER WIRE
LASHING WIRE

TOP VIEW

PLANT SYMBOL

GALVANIZED 3/8" G30 EVERCOAT
GALVANIZED 3/4" (19)
WOOD POLE

GALVANIZED 3/8" (115) WASH WITH 3/6" (120) HOLE
GALVANIZED 3/8" (150) WASH WITH 3/6" (120) HOLE

T-11 (2004) 2/2
SPAN WIRE ATTACHMENT BETWEEN POLES

NOTE: SPAN WIRE ATTACHMENT BETWEEN METAL POLES IS THE SAME AS SHOWN FOR WOOD POLES EXCEPT THAT THE STRAIN PLATES AND GUY HOOKS ARE NOT USED. FOR DETAIL SEE T-14 SHEET 2 - "DEAD END MESSENGER WIRE ATTACHMENT, METAL POLES".

PLAN SYMBOL

X
DEAD END MESSENGER WIRE ATTACHMENT

WOOD POLES

- Service Wedge Clamp
- Messenger Wire
- Messenger Clamp
- Lashing Wire
- Cable Spacer
- Electrical Cable

METAL POLES

- Service Sleeve
- Messenger Wire
- Wood Pole
- Service Sleeve
- Messenger Wire
- Metal Pole
- Messenger Wire

NOTES:
1. Installation method shown for dead end messenger wire attachment to metal poles shall be used for span wire attachment between metal poles.

PLAN SYMBOL

WOOD POLES

- Service Wedge Clamp
- Messenger Wire
- Messenger Clamp
- Lashing Wire
- Cable Spacer
- Electrical Cable

METAL POLES

- Service Sleeve
- Messenger Wire
- Wood Pole
- Service Sleeve
- Messenger Wire
- Metal Pole
- Messenger Wire

NOTES:
1. Installation method shown for dead end messenger wire attachment to metal poles shall be used for span wire attachment between metal poles.
1. Type 6 conduit junction well shall be precast polymer concrete.
2. All conduit junction wells constructed within pavement, sidewalks, etc. will be constructed flush with the surface of the same. Installation in unpaved areas will be constructed above grade and graded to drain away from the conduit junction well.
3. Polymer concrete covers shall be the heavy-duty type with a design load of 10,000 lbs (4500 kg) over a 10' (3050) square.
1. Type 7 conduit junction well shall be precast polymer concrete.
2. All conduit junction wells constructed within pavement, sidewalks, etc. will be constructed flush with the surface of the same. Installation in unpaved areas will be constructed above grade and graded to drain away from the conduit junction well.
3. Polymer concrete covers shall be the heavy duty type with a design load of 20,000 lbs (6800 kg) over a 10'x10'x10' square.
1). Types 8 & 10 conduit junction wells shall be precast polymer concrete.
2). All conduit junction wells constructed within pavement, sidewalks, etc., will be constructed flush with the surface of the same. Installation in unpaved areas will be constructed above grade and graded to drain away from the conduit junction well.
3). Polymer concrete covers shall be the heavy-duty type with a design load of 15,000 lbs (6800 kg) over a 10" (255) square.

Notes:
- DelDOT

Materials:
- Polymer concrete with a heavy-duty fiberglass reinforcement
- Silicone sealer installed dry (Typ) - hole saw with trade size
- Galvanized conduit
- Metallic conduit
- Stone

Dimensions:

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Type 8</th>
<th>Type 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>47 1/4" (120)</td>
<td>35 1/4" (90)</td>
</tr>
<tr>
<td>B</td>
<td>30 1/4" (75)</td>
<td>24" (60)</td>
</tr>
<tr>
<td>C</td>
<td>49 1/4" (125)</td>
<td>37 1/4" (95)</td>
</tr>
<tr>
<td>D</td>
<td>32 1/4" (85)</td>
<td>26" (65)</td>
</tr>
<tr>
<td>E</td>
<td>45 1/4" (115)</td>
<td>33 1/4" (85)</td>
</tr>
<tr>
<td>F</td>
<td>28 1/4" (70)</td>
<td>22 1/4" (55)</td>
</tr>
<tr>
<td>G</td>
<td>30" (75)</td>
<td>30" (75)</td>
</tr>
<tr>
<td>H</td>
<td>33" (80)</td>
<td>27" (68)</td>
</tr>
<tr>
<td>Base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>58" (120)</td>
<td>46" (115)</td>
</tr>
<tr>
<td>J</td>
<td>40" (101)</td>
<td>34" (85)</td>
</tr>
</tbody>
</table>
1. UPRIGHT CONFIGURATION SHALL BE USED FOR MOUNTING ON MAST ARMS, SIGNAL HEAD FRAMEWORKS AND PEDESTALS.
2. UPRIGHT MOUNTING HARDWARE SHALL BE SUPPLIED BY THE DEPARTMENT.
3. TEFLOM TAPE SHALL BE APPLIED TO THREADS BEFORE MOUNTING.
1. Inverted configuration shall be used for span mount.
2. Span wire mounting hardware shall be supplied by the department.
3. Teflon tape shall be applied to threads before mounting.
4. Route the lead-in cable through the metal cap and the rubber plug. Replace the metal cap, sealing the cable entry port. Tighten the metal cap so the cable will not slide through the rubber plug.