LONGITUDINAL STEEL: 6 CAGE (4.89) WIRE SPACED 3" (15) C.C., 26" (655) LONG (TYP.)

TRANSVERSE STEEL: 7 CAGE (4.59) WIRE SPACED 8" (200) C.C.

SECTION A-A

NOTES:
1. LONGITUDINAL STEEL SHALL BE HELD IN PLACE BY CRADLES.
2. LETTERS AND CROSS TO BE COUNTERSUNK IN TOP OF MARKER 1/4" (8).

DELWARE DEPARTMENT OF TRANSPORTATION

CONCRETE MONUMENT
STANDARD NO. M-2 (2001)
SHT. 1 OF 1
APPROVED
RECOMMENDED
NOTES:

1. THE 4" ID CONCRETE SHARED-USE PATH SHALL BE FINISHED TO INCLUDE A TEXTURED WARNING SURFACE BY USING A JOINT STRIKE TO PRODUCE A 1/4" ID (0.015"") DEEP "V" JUXTAPOSED AT 6 1/2" ID (0.011") JUNCTURE.
 PAYMENT FOR INSTALLING THE GROOVED FINISH SHALL BE INCIDENTAL TO THE SIDEWALK CONSTRUCTION.

2. IF THE SHARED USE PATH ENDS AT A ROADWAY OR RAILROAD CROSSING, THEN DETECTABLE WARNING TRUNCATED DOMES 24" ID (0.019") LONG AND THE FULL WIDTH OF THE PATH SHALL BE INSTALLED. SEE SHEET C-2.

3. STEEL TUBE TO EXTEND 3/4" ID (0.003") ABOVE GROUND WITH CONCRETE TO SLOPE AWAY FROM TUBE TO KEEP WATER AND SEDIMENT FROM DRIPPING INTO TUBE.

4. BOLLARDS ARE NOT REQUIRED FOR A SHARED-USE PATH LESS THAN 6' (2450 MM) WIDE.

5. SHAPE THE POST AS NECESSARY SO THAT IT WILL FIT IN THE STEEL TUBE.
BIKE RACK DETAILS

1. 5 BIKES
 - BICYCLE RACK
 - W = 14" (355)

2. 7 BIKES
 - BICYCLE RACK
 - W = 18" (457)

3. 9 BIKES
 - BICYCLE RACK
 - W = 22" (559)

4. 11 BIKES
 - BICYCLE RACK
 - W = 26" (660)

5. 12 BIKES
 - BICYCLE RACK
 - W = 30" (762)

SLOPE TO DRAIN

OUTER EDGE OF CONCRETE FOOTING TO BE FLUSH WITH SURROUNDING GRADE (TYP.)

CONCRETE (TYP.)

STONE (TYP.)

24" (610) MIN.

36" (914) MIN.

5 BIKE RACK
NOTES:
1. ALL RAIL JOINTS SHALL BE CENTERED AT THE POSTS.
2. ALL JOINTS SHALL BE ATTACHED WITH 3 - 12d NAILS AND TWO ADJACENT RAILS SHALL NOT END ON THE SAME POST.
3. RAILS SHALL BE FLUSH TO THE POSTS AT THE END POSTS.
NOTES:

1. Actual pattern to be used shall be specified on the plans. Color is to be "brick red" unless otherwise noted on the plans.
2. Materials and pavement box vary depending on plans.
3. For crosswalk applications, 8" (200) white lines should be placed on both sides.
4. The patterns above are the preferred patterns available for sidewalk or crosswalk applications.

NOTES:

1. All pavers are to be "brick red" unless otherwise specified on the plans. Pattern shall be specified on the plans.
2. Expansion joint may be needed on non-curb side of brick paver sidewalk if this is against building or other confining feature.
SLAB PLAN (WITH DOWEL AND TIE LOCATIONS)

NOTES:
1. TRANSVERSE JOINTS ARE PERPENDICULAR TO THE CENTERLINE OF THE PAVEMENT WHEN THE PAVEMENT IS STRAIGHT.
2. TRANSVERSE JOINTS ARE PERPENDICULAR TO A TANGENT LINE TO THE OUTSIDE ARC OF THE PAVEMENT WHEN THE PAVEMENT IS CURVED.
3. ALIGN THE TRANSVERSE JOINTS FOR ALL ADJACENT SLABS WITH EACH OTHER.
4. ABREPT CHANGES IN PAVEMENT WIDTH MAY OCCUR ONLY AT THE TRANSVERSE JOINT LINE; LONGITUDINAL JOINTS SHALL BE CONTINUOUS WHENEVER POSSIBLE.
5. LONGITUDINAL JOINTS SHOULD NOT BE LOCATED WITHIN PROPOSED WHEEL PATHS. THE WHEEL PATH IS GENERALLY LOCATED 2' (600) INSIDE OF THE LANE EDGELINE OR CENTERLINE.
NOTES:
1. AS DIMENSIONED, THE WIDTH OF THE TRANSVERSE SEALANT RESERVOIR IS APPLICABLE WHEN THE TEMPERATURE OF THE PAVEMENT SURFACE IS BETWEEN 60°F (16°C) AND 80°F (27°C). WHEN THE TEMPERATURE IS BELOW 60°F (16°C), THE SEALANT RESERVOIR SHALL BE CUT "W" (2) WIDER. WHEN THE TEMPERATURE IS ABOVE 80°F (27°C), THE SEALANT RESERVOIR SHALL BE CUT "W" (2) NARROWER.
2. "T" REFERS TO THE ACTUAL CONSTRUCTED SLAB THICKNESS.
3. TOLERANCE ON ALL JOINT SEALANT DETAIL DIMENSIONS SHOWN WITHOUT RANGES SHALL BE PLUS 1/4" (6.4 mm) MINUS 0.1 T/3.
4. THE TOP EDGES OF THE CONTACT SURFACES OF THE SEALANT MATERIAL ON BOTH SIDES OF THE JOINT RESERVOIR SHALL BE AT THE SAME ELEVATION.
5. TRANSVERSE JOINT MATERIAL SHALL BE PLACED BEFORE LONGITUDINAL JOINT MATERIAL. THE TRANSVERSE JOINT MATERIAL SHALL BE CONTINUOUS FOR THE FULL WIDTH OF ALL ADJACENT P.C.C. PAVEMENT SLABS.
6. LONGITUDINAL JOINT MATERIAL SHALL BE PLACED WITHOUT GAPS WHEREVER INTERRUPTED BY THE TRANSVERSE JOINT MATERIAL.
7. LONGITUDINAL JOINT SEAL TO BE RECESSED 1/4" (6.4 mm) TO 3/8" (9.5 mm) BELOW THE TOP OF THE SLAB.
8. A 45° CHAMFER SHALL BE CUT 1/4" (6.4 mm) TO 1/2" (12.7 mm) DEEP AT THE TOP OF THE SLAB ALONG BOTH SIDES OF THE TRANSVERSE SEALANT RESERVOIR.
9. THE TOP EDGES OF THE COMPRESSION SEAL SHALL BE IN FULL CONTACT WITH THE SLAB SIDES.
DOWEL & TIE BAR PLACEMENT TOLERANCES
PLAN

- Proposed locations for transverse joints shall exactly match the alignment of the final existing or relocated transverse joints in all immediately adjacent lanes.

NOTES:
1. When repairing existing transverse joints, the patch shall extend a minimum of 24" (600 mm) through the existing joint, which will relocate the joint.
2. Proposed locations for transverse joints, when not aligned with the final expected transverse joint locations in the immediately adjacent lanes, shall be offset a minimum of 24" (600 mm) from the aforementioned joints.
3. The longitudinal joint alignment shall be straight and continuous through the repaired area.

FULL DEPTH PATCH

DELAWARE DEPARTMENT OF TRANSPORTATION

P.C.C. PAVEMENT PATCHING

<table>
<thead>
<tr>
<th>STANDARD NO.</th>
<th>SHT.</th>
<th>OF</th>
<th>RECOMMENDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-2 (2001)</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

APPROVED
John M. Hitchens, 6/18/01

DATE
04/18/2001
SECTION A-A

SECTION B-B

SECTION C-C

FULL DEPTH PATCH

DELaware
DEPARTMENT OF TRANSPORTATION

P.C.C. PAVEMENT PATCHING

SHT. 2 OF 5

APPROVED

RECOMMENDED

EASTON 11/15/05

C. C. C. C. 11/15/05

08/25/2004
NOTES:

1. **D** - DOWEL DIAMETER (INCLUDING PROTECTING COATINGS, IF ANY).

2. **R** - RADIUS OF CURVATURE.

3. **T** - PAVEMENT SLAB THICKNESS.

4. **B** - BACKER ROD DIAMETER (UNCOMPRESSED DIAMETER = 2" (50) MIN.

5. **H** - HOT-POURED JOINT SEALANT.

6. **C** - CUT (T < 12") P.C.C. PAVEMENT.

7. **C** - CUT (T > 12") P.C.C. PAVEMENT.

8. **S** - HOT-POURED JOINT SEALANT.

9. **G** - HOT-POURED JOINT SEALANT.

10. **P** - HOT-POURED JOINT SEALANT.

11. **W** - WEEP HOLE.

12. **G** - GROUT RETENTION DISK.

13. **H** - HOT-POURED JOINT SEALANT.

14. **P** - HOT-POURED JOINT SEALANT.

15. **W** - HOT-POURED JOINT SEALANT.

16. **P** - HOT-POURED JOINT SEALANT.

17. **W** - HOT-POURED JOINT SEALANT.

18. **P** - HOT-POURED JOINT SEALANT.

19. **W** - HOT-POURED JOINT SEALANT.

20. **P** - HOT-POURED JOINT SEALANT.

21. **W** - HOT-POURED JOINT SEALANT.

22. **P** - HOT-POURED JOINT SEALANT.

23. **W** - HOT-POURED JOINT SEALANT.

24. **P** - HOT-POURED JOINT SEALANT.

25. **W** - HOT-POURED JOINT SEALANT.

26. **P** - HOT-POURED JOINT SEALANT.

27. **W** - HOT-POURED JOINT SEALANT.

28. **P** - HOT-POURED JOINT SEALANT.

29. **W** - HOT-POURED JOINT SEALANT.

30. **P** - HOT-POURED JOINT SEALANT.

31. **W** - HOT-POURED JOINT SEALANT.

32. **P** - HOT-POURED JOINT SEALANT.

33. **W** - HOT-POURED JOINT SEALANT.

34. **P** - HOT-POURED JOINT SEALANT.

35. **W** - HOT-POURED JOINT SEALANT.

36. **P** - HOT-POURED JOINT SEALANT.

37. **W** - HOT-POURED JOINT SEALANT.

38. **P** - HOT-POURED JOINT SEALANT.

39. **W** - HOT-POURED JOINT SEALANT.

40. **P** - HOT-POURED JOINT SEALANT.

41. **W** - HOT-POURED JOINT SEALANT.

42. **P** - HOT-POURED JOINT SEALANT.

43. **W** - HOT-POURED JOINT SEALANT.

44. **P** - HOT-POURED JOINT SEALANT.

45. **W** - HOT-POURED JOINT SEALANT.

46. **P** - HOT-POURED JOINT SEALANT.

47. **W** - HOT-POURED JOINT SEALANT.

48. **P** - HOT-POURED JOINT SEALANT.

49. **W** - HOT-POURED JOINT SEALANT.

50. **P** - HOT-POURED JOINT SEALANT.

51. **W** - HOT-POURED JOINT SEALANT.

52. **P** - HOT-POURED JOINT SEALANT.

53. **W** - HOT-POURED JOINT SEALANT.

54. **P** - HOT-POURED JOINT SEALANT.

55. **W** - HOT-POURED JOINT SEALANT.

56. **P** - HOT-POURED JOINT SEALANT.

57. **W** - HOT-POURED JOINT SEALANT.

58. **P** - HOT-POURED JOINT SEALANT.

59. **W** - HOT-POURED JOINT SEALANT.

60. **P** - HOT-POURED JOINT SEALANT.

61. **W** - HOT-POURED JOINT SEALANT.

62. **P** - HOT-POURED JOINT SEALANT.

63. **W** - HOT-POURED JOINT SEALANT.

64. **P** - HOT-POURED JOINT SEALANT.

65. **W** - HOT-POURED JOINT SEALANT.

66. **P** - HOT-POURED JOINT SEALANT.
DOWEL & TIE BAR PLACEMENT TOLERANCES

FULL DEPTH PATCH
NOTE: CLOSED CELL POLYETHYLENE FOAM SHALL BE THE SAME WIDTH AS THE JOINT AND 3' (900MM) IN DEPTH. AFTER THE CONCRETE IN THE REPAIR AREA HAS ACHIEVED THE SPECIFIED STRENGTH, THE FOAM SHALL BE REMOVED AND REPLACED WITH BACKER ROD AND HOT-POUR SEALANT MEETING ALL APPLICABLE STANDARD DETAILS AND SPECIFICATIONS.

SECTION WITH SPALL NOT ADJACENT TO JOINT

NOTE: WHEN X > 12' (3600MM), THEN Y = P/25 AND POLYETHYLENE FOAM IS NOT USED. WHEN X ≤ 12' (3600MM), THEN Y = X AND POLYETHYLENE FOAM IS USED.
NOTES:

1. Type 1 conduit junction well shall be precast concrete. At least one hole in precast wells will be of a 5" (125) diameter completely through the wall. Unused holes shall be plugged.
2. Type 2 and Type 3 conduit junction wells shall be brick and will conform to standard specifications for brick masonry. Joints shall be concave type. Type 2 walls will be a nominal 4" (100) thick. Type 3 wall will be a nominal 8" (200) thick.
3. Type 2 and Type 3 conduit junction wells shall not be placed under any type of pavement.
4. All conduit junction wells constructed within pavement, sidewalks, etc. will be constructed flush with the surface of the same. Installation in unpaved areas will be constructed above grade and grouted to drain away from conduit junction well.
NOTES

II. TYPE 4 CONDUIT JUNCTION WELL SHALL BE PRECAST CONCRETE, AT LEAST ONE HOLE IN PRECAST WELLS WILL BE OF A 5/8" (16) DIAMETER COMPLETELY THROUGH THE WALL. UNUSED HOLES SHALL BE PLUGGED.

21. ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC., WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE SAME. INSTALLATION IN UNPAVED AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO DRAIN AWAY FROM CONDUIT JUNCTION WELL.
NOTES:
II. TYPE S CONDUIT JUNCTION WELL SHALL BE PRECAST CONCRETE, AT LEAST ONE HOLE IN PRECAST WELLS WILL BE OF A 5" (125) DIAMETER COMPLETELY THROUGH THE WALL, UNUSED HOLES SHALL BE PLUGGED.

25. ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC. WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE ROAD. INSTALLATION IN UNPAVED AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO DRAIN AWAY FROM CONDUIT JUNCTION WELL.

SECTION A-A
UNDERGROUND CONDUIT ENDS SHALL BE CAPPED WITH A GALVANIZED THREADED CONDUIT PLUG UNLESS CONNECTED TO AN EXISTING CONDUIT.

BOLT CIRCLE DIAMETER TO BE AS DIRECTED BY THE ENGINEER

GROUND FOR POLE TO BE ATTACHED TO GROUND RODS (4" O.D. X 24" O.D. 60963)

GROUNDED (MASTARM OR SPAN)

8 EQUALLY SPACED #8 (M25) REINFORCING BARS

ROUND BASE

EQUALLY SPACED #4 (M13) REINFORCING BARS

2½" (64) CONDUIT SWEPS

EXISTING CONDUIT

UNDERGROUND CONDUIT ENDS SHALL BE CAPPED WITH A GALVANIZED THREADED CONDUIT PLUG UNLESS CONNECTED TO AN EXISTING CONDUIT.

BOLT CIRCLE DIAMETER TO BE AS DIRECTED BY THE ENGINEER

GROUND FOR POLE TO BE ATTACHED TO GROUND RODS (4" O.D. X 24" O.D. 60963)

3" (75) (TYP)

2½" (64) CONDUIT SWEPS

EXISTING CONDUIT

SQUARE BASE

NOTE: BASE DEPENDENT ON POLE AND EQUIPMENT TO BE ATTACHED.
TYPICAL SECTION (BASES 1, 2A, 2B, 3, 3A, 3B, AND 7)

NOTES:
1) PLACE 2 EACH 6" (150) LONG X ½" (12) OA. P.V.C. SCHEDULE 40 (TYP) VENTS IN THE GROUT AS DIRECTED IN THE FIELD BY ENGINEER.
2) SEE POLE BASE DATA CHART FOR POLE BASE DIMENSIONS.
NOTES:

1. UNDERGROUND CONDUIT ENDS SHALL BE CAPPED WITH A GALVANIZED THREADED CONDUIT PLUG UNLESS CONNECTED TO AN EXISTING CONDUIT.

2. PLACE 2 EACH 6" x 8"
 VENTS IN THE GROUT AS DIRECTED IN THE FIELD BY THE ENGINEER.
1 - #3 (M2) SPIRAL BAR, 504" (12800) LONG AT 8" (200) PITCH

8 - #5 (M6) BARS, 4" (1050) LONG

NOTES:
8. STUB POST TO BE SUPPLIED BY THE DEPARTMENT'S TRAFFIC, ENGINEERING, AND MANAGEMENT SECTION.

SECTION A-A
1. The contractor shall be responsible for protecting the conduit against any possible damage in paving operations.

2. The weatherproof fitting shall consist of a galvanized 1/2" x 3/8" coupling containing a steel threaded reducing bushing 1/2" x 3/8" to 3/8" x 3/8" and a 3/8" x 3/8" watertight connector for service entrance cable.

3. The lead-in wire shall be run through the rubber of the weatherproof fitting.

Detail A - Typical Installation Under Integral Curb and Gutter

Detail B - Typical Installation Under Curbing

Detail C - Typical Installation Without Curbing

Delaware Department of Transportation

Loop Detector to Conduit Junction Well Connection

Sht. 1 of 1

Recommended

Approved
1. Saw cuts for wire slot construction shall be extended beyond the corners so that the slot is full depth at turn points. A forty-five (45) degree angle shall be cut 12" (300 mm) back from the point of the extended corner.

2. The longitudinal / transverse cut shall be stopped approximately 2" (50 mm) from the corner to prevent the triangular portion of the pavement from breaking.

3. A maximum of two loop detectors can be spliced to one lead-in cable. The detail illustrates the method of splicing two loop detectors. Loop *1 and Loop *2 to a lead-in cable.

4. Loop detector shall be centered in travel lane.

NOTES:

SECTION A - A

SECTION B - B

DELAWARE

DEPARTMENT OF TRANSPORTATION

STANDARD NO. T-9 (2006) SHT. 1 OF 1

TYPE #1 LOOP DETECTOR

APPROVED

RECOMMENDED
WIRE SLOT CONSTRUCTION

NOTES:

1. SAW CUTS FOR WIRE SLOT CONSTRUCTION SHALL BE EXTENDED BEYOND THE CORNERS SO THAT THE SLOT IS FULL DEPTH AT TURN POINTS. A FORTY-FIVE (45) DEGREE ANGLE SHALL BE CUT 1' (0.3 m) BACK FROM THE POINT OF THE EXTENDED CORNER.

2. THE LONGITUDINAL / TRANSVERSE CUT SHALL BE STOPPED APPROXIMATELY 2" (50) FROM THE CORNER TO PREVENT THE TRIANGULAR PORTION OF THE PAVEMENT FROM BREAKING.

3. A MAXIMUM OF TWO LOOP DETECTORS CAN BE SPliced TO ONE LEAD-IN CABLE. THE DETAIL ILLUSTRATES THE METHOD OF SPlicing TWO LOOP DETECTORS LOOP #1 AND LOOP #2 TO A LEAD-IN CABLE.

4. LOOP DETECTOR SHALL BE CENTERED IN TRAVEL LANE.

SECTION A - A

SECTION B - B

DELTAORE
DEPARTMENT OF TRANSPORTATION

STANDARD NO. T-10 (2006)
SHT. 1 OF 1

APPROVED: Chambers, Wiltch 12/5/05
RECOMMENDED: Chambers, Wiltch 11/8/05

01/19/2006
Span Wire Attachment Between Poles

Strain Plate
Wood Pole

3/4" x 6" LAG Screw
Guy Hook

1/4" x 1/4" AVS

3/4" x 6" BOLTS

1/2" x 1/4" AVS

3-Bolt Guy Clamps

1/2" x 1/2" Wire

Strain Plate
Wood Pole

GALVANIZED SCREW

GALVANIZED SCREW

GALVANIZED SCREW

Service Sleeve

Span Wire

Top View

Match Line A - A

Match Line A - A

Delaware Department of Transportation

Standard No. T-12 (2005)

SHT. 1 OF 2

Approved

Recommended

05/09/2005

05/09/2005

Notes:
Span Wire Attachment Between Metal Poles is the same as shown for Wood Poles except that the Strain Plates and Guy Hooks are not used. For detail see T-14 Sheet 2 - "Dead End Messenger Wire Attachment, Metal Poles ".
WOOD POLES

SERVICE WEDGE CLAMP
MESSENER WIRE
MESSENER CLAMP
LASHING WIRE
CABLE SPACER
ELECTRICAL CABLE

WOOD POLE

GALVANIZED
1/4" X 80 X 3" (75) X 3" (75)
WASHER WITH 3/8" 2BH HOLE

GALVANIZED
3/8" X 109 NUTS
(2) REQUIRED

GALVANIZED
3/16" X 3" (75) X 3" (75)
WASHER WITH 5/16" GB HOLE

GALVANIZED
1/2" X 109 EYEBOLT

METAL POLES

SERVICE SLEEVE
GALVANIZED
3-BOLT 5/8" X 80 (2 REQUIRED)
MESSENER WIRE
2 1/2 WRAPS AROUND POLE

36" (914) MIN.
12" (25)
30" (762)

MESSENER SPACER
METAL POLE

NOTES:
II. INSTALLATION METHOD SHOWN FOR DEAD END MESSENER WIRE ATTACHMENT TO METAL POLES SHALL BE USED FOR SPAN WIRE ATTACHMENT BETWEEN METAL POLES.

DELWARE DEPARTMENT OF TRANSPORTATION

DEAD END MESSENER WIRE ATTACHMENT

STANDARD NO. T-12 (2006)
SHT. 2 OF 2

APPROVED 12/5/05
RECOMMENDED 11/29/05

09/09/2005
NOTES:

1. TYPE 6 CONDUIT JUNCTION WELL SHALL BE PRECAST POLYMER CONCRETE.

2. ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC. WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE SAME. INSTALLATION IN UNPAVED AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO DRAIN AWAY FROM THE CONDUIT JUNCTION WELL.

3. POLYMER CONCRETE COVERS SHALL BE THE HEAVY-DUTY TYPE WITH A DESIGN LOAD OF 15,000 LBS (6800 kg) OVER A 10' x 10' (25X25) SQUARE.
1. Type 7 conduit junction well shall be precast polymer concrete.

2. All conduit junction wells constructed within pavement, sidewalks, etc. will be constructed flush with the surface of the same. Installation in unpaved areas will be constructed above grade and graded to drain away from the conduit junction well.

3. Polymer concrete covers shall be the heavy-duty type with a design load of 2,000 lbs (900 kg) over a 10" x 12" square.

Section A-A

Plan View

Plan Symbol

DelDOT Traffic Fiber Optics

NOTES:

POLYMER CONCRETE WITH A
HEAVY-WEAVE FIBERGLASS
REINFORCEMENT

1/2" (13) PULL SLOT

1/2" (12.7) MIN.
3/4" (19.1) MAX.

POLYMER TONGUE
AND GROOVE

HAND GRIPS
(2)

HAND GRIPS
(2)

GALV. CONDUIT
BUSHING

NONMETALLIC CONDUIT
BUSHING

FINISHED GRADE
(PAVEMENT)

31" (787)
31" (787)

BUSHING

STONE

POLYMER CONCRETE
WITH A
HEAVY-WEAVE FIBERGLASS
REINFORCEMENT

3/8" - 16 UNC HEX BOLT
WASHERS TO BE SECURED
INTO THE WELL FRAME

64/3" (164)
663/8" (168)

FINISHED GRADE
(UNPAVED)
Notes:
1. Types 8 & 10 conduit junction wells shall be precast polymer concrete.
2. All conduit junction wells constructed within pavement, sidewals, etc., will be constructed flush with the surface of the same. Installation in unpaved areas will be constructed above grade and graded to drain away from the conduit junction well.
3. Polymer concrete covers shall be the heavy-duty type with a design load of 15,000 lbs (6800 kg) over a 10-inch (255) square.

Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Type 8</th>
<th>Type 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover A</td>
<td>47 1/4" (120)</td>
<td>35 1/4" (195)</td>
</tr>
<tr>
<td>B</td>
<td>30 1/4" (76)</td>
<td>24" (60)</td>
</tr>
<tr>
<td>C</td>
<td>49 1/4" (125)</td>
<td>37 1/4" (95)</td>
</tr>
<tr>
<td>D</td>
<td>32 1/4" (81)</td>
<td>26" (660)</td>
</tr>
<tr>
<td>E</td>
<td>45 1/4" (114)</td>
<td>33 1/4" (840)</td>
</tr>
<tr>
<td>F</td>
<td>28 1/4" (71)</td>
<td>22 1/4" (560)</td>
</tr>
<tr>
<td>G</td>
<td>36" (914)</td>
<td>30" (762)</td>
</tr>
<tr>
<td>H</td>
<td>33" (838)</td>
<td>27" (690)</td>
</tr>
<tr>
<td>Base I</td>
<td>59" (1473)</td>
<td>46" (1168)</td>
</tr>
<tr>
<td>J</td>
<td>40" (1016)</td>
<td>34" (864)</td>
</tr>
</tbody>
</table>

Section A-A

- **Plan Symbol**
- **DelDOT**
- **Drawing Details**
- **Delaware Department of Transportation**
- **Approved by:**
- **Recommended by:**
- **Date:** 08/07/2004
- **Scale:** N.T.S.
1. UPRIGHT CONFIGURATION SHALL BE USED FOR MOUNTING ON MAST ARMS, SIGNAL HEAD FRAMEWORKS AND PEDESTALS.
2. UPRIGHT MOUNTING HARDWARE SHALL BE SUPPLIED BY THE DEPARTMENT.
3. TEFLOM TAPE SHALL BE APPLIED TO THREADS BEFORE MOUNTING.
CABLE CONNECTIONS TO TERMINAL STRIP

TO TERMINAL STRIP

5 WRAPS OF SCOTCH SUPER 33 TAPE

SPAN WIRE

SPAN WIRE CLAMP

MOUNTING NUT

WIRE ACCESS DOOR WEATHER PROOF

GREEN BLACK WHITE RED

4-POSITION TERMINAL STRIP

ACCESS DOOR SCREW HOLE

TUBE ASSEMBLIES

TUBE SHELLS

CABLE ENTRY PORT

4-CONDUCTOR #8 AWG SHIELDED LEAD-IN CABLE

METAL CAP (SEE NOTE 4)

LOWER POINT OF DRIP LOOP MUST BE LOWER THAN CABLE ENTRY POINT

DRIP LOOP

CAP SCREW

SIDE VIEW

1/4" x 1/2" WEEP HOLE

NOTE:
0. INVERTED CONFIGURATION SHALL BE USED FOR SPAN MOUNT.
1. SPAN WIRE MOUNTING HARDWARE SHALL BE SUPPLIED BY THE DEPARTMENT.
2. TEFLEX TAPE SHALL BE APPLIED TO THREADS BEFORE MOUNTING.

DELAWARE DEPARTMENT OF TRANSPORTATION

EMERGENCY PREEMPTION RECEIVER, INVERTED MOUNT

SHT. 2 OF 2

APPROVED

RECOMMENDED

02/09/2005