NOTES:
1. SEE PLANT LIST FOR SPACING CO.

PERENNIAL/GROUND COVER
FINISHED GRADE
3"(75) MULCH - NOT TO COVER LEAVES
ROOT MASS
6"(150) PREPARED SOIL MIX, AS PER SPECIFICATION.
SUBGRADE TILLED TO 6"(150) DEPTH

SECTION VIEW
LONGITUDINAL STEEL 6 CAGE 4.09 MRE
SPACED 3' (15) C.C., 26' (1650) LONG (TYP.)

TRANSVERSE STEEL 7 CAGE 4.50 MRE
SPACED 8' (2400) C.C.

SECTION A-A

TOP

ELEVATION

TOP DETAIL

NOTES:
1. LONGITUDINAL STEEL SHALL BE HELD IN PLACE BY CRADLES.
2. LETTERS AND CROSS TO BE COUNTERSUNK IN TOP OF MARKER ¼" (6A).
SHARED USE PATH INTERSECTION

NOTES:
1. THE 4"X100 CONCRETE SHARED-USE PATH SHALL BE FINISHED TO INCLUDE A TEXTURED WARNING SURFACE BY USING A JOINT STRIPE TO PRODUCE A 1/8" DEEP "V"-JOINT AT 6"X100 O.C. PAYMENT FOR INSTALLING THE GROOVED FINISH SHALL BE INCIDENTAL TO THE SIDEWALK CONSTRUCTION.
2. FOR 8' (2400) AND 10' (3050) PATH WIDTH, THE OUTSIDE DIMENSION FROM CENTER OF BOLLARD TO EDGE OF PATH SHALL BE 2' (610) AND 3' (915) RESPECTIVELY.
4. STEEL TUBE TO EXTEND 1/2" (13) ABOVE GROUND WITH CONCRETE TO SLOPE AWAY FROM TUBE TO KEEP WATER AND SEDIMENT FROM DRAINING INTO TUBE.
BIKE RACK DETAILS

1. 5 BIKES
 W = 38" (965)

2. 7 BIKES
 W = 63" (1600)

3. 9 BIKES
 W = 87" (2210)

4. 11 BIKES
 W = 111" (2819)

5. 12 BIKES
 W = 135" (3430)

6. 13 BIKES
 W = 159" (3990)

SLOPE TO DRAIN

DEPARTMENT OF TRANSPORTATION

DELTA RACK

W = 38" (965)

W = 63" (1600)

W = 87" (2210)

W = 111" (2819)

W = 135" (3430)

W = 159" (3990)

OUTER EDGE OF CONCRETE FOOTING TO BE FLUSH WITH SURROUNDING GRADE (TYP.)

CONCRETE (TYP.)

STONE (TYP.)

2 3/8 " (60) DIA. TUBING

3" (75)

5/8" (244) (TYP.)

12" (305) DIA.

12" (305) MIN.
WOOD RAIL FENCE DETAILS

1. ALL RAIL JOINTS SHALL BE CENTERED AT THE POSTS.
2. ALL JOINTS SHALL BE ATTACHED WITH 3-12d NAILS AND TWO ADJACENT RAILS SHALL NOT END ON THE SAME POST.
3. RAILS SHALL BE FLUSH TO THE POSTS AT THE END POSTS.

NOTES:

SLOPE TO DRAIN

WATER TOP AT 3%/SLOPE

CLASS B CONCRETE

SECTION A-A

TYPICAL JOINT DETAIL

POSTS 8' (2.4m) O.C. ON STRAIGHT RUNS, 4' (1.2m) O.C. AROUND CURVES

SECTIONS:

- POSTS 8' (2.4m) O.C. ON STRAIGHT RUNS, 4' (1.2m) O.C. AROUND CURVES
- TYPICAL JOINT DETAIL

SCALE: NTS.
NOTES:
1. Actual pattern to be used shall be specified on the plans. Color is to be "brick red" unless otherwise noted on the plans.
2. Materials and pavement box vary depending on plans.
3. For crosswalk applications, 8" (200) white lines should be placed on both sides.
4. The patterns above are the preferred patterns available for sidewalk or crosswalk applications.

BRICK PAVING SIDEWALK DETAIL

NOTES:
1. All pavers are to be "brick red" unless otherwise specified on the plans. The pattern shall be specified on the plans.
2. Expansion joint may be needed on non-curb side of brick paver sidewalk if this is against building or other confining feature.
SLAB PLAN (WITH DOWEL AND TIE LOCATIONS)

NOTES:
1. TRANSVERSE JOINTS ARE PERPENDICULAR TO THE CENTERLINE OF THE PAVEMENT WHEN THE PAVEMENT IS STRAIGHT.
2. TRANSVERSE JOINTS ARE PERPENDICULAR TO A TANGENT LINE TO THE OUTSIDE ARC OF THE PAVEMENT WHEN THE PAVEMENT IS CURVED.
3. ALIGN THE TRANSVERSE JOINTS FOR ALL ADJACENT SLABS WITH EACH OTHER.
4. ABRUPT CHANGES IN PAVEMENT WIDTH MAY OCCUR ONLY AT THE TRANSVERSE JOINT LINE; LONGITUDINAL JOINTS SHALL BE CONTINUOUS WHENEVER POSSIBLE.
5. LONGITUDINAL JOINTS SHOULD NOT BE LOCATED WITHIN PROPOSED WHEEL PATHS. THE WHEEL PATH IS GENERALLY LOCATED 2'-0" INSIDE OF THE LANE EDELGE OR CENTERLINE.

DELAWARE
DEPARTMENT OF TRANSPORTATION

P.C.C. PAVEMENT

STANDARD NO. P-1 (2001) SHT. 1 OF 5

APPROVED

RECOMMENDED

04/18/2001
LONGITUDINAL SAW-CUT JOINT DETAIL

TRANSVERSE SAW-CUT JOINT DETAIL

TRANSVERSE CONSTRUCTION JOINT DETAIL

LONGITUDINAL CONSTRUCTION JOINT DETAIL

KEYWAY DETAIL

SEALANT DETAIL - LONGITUDINAL JOINT

SEALANT DETAIL - TRANSVERSE JOINT

Notes:
1. As dimensioned, the width of the transverse sealant reservoir is applicable when the temperature of the pavement surface is between 60°F (16°C) and 80°F (27°C). When the temperature is below 60°F (16°C), the sealant reservoir shall be cut 1⁄4" (6) narrower. When the temperature is above 80°F (27°C), the sealant reservoir shall be cut 1⁄4" (6) wider.
2. "T" refers to the actual constructed slab thickness.
3. Tolerance on all joint sealant detail dimensions shown without ranges shall be plus or minus 1⁄4" (6) minimum.
4. The top edges of the contact surfaces of the sealant material on both sides of the joint reservoir shall be at the same elevation.
5. Transverse joint material shall be placed before longitudinal joint material. The transverse joint material shall be continuous for the full width of all adjacent PCC pavement slabs.
6. Longitudinal joint material shall be placed without gaps wherever interrupted by the transverse joint material.
7. Transverse joint seal to be recessed 1⁄4" (6) to 1⁄2" (12) below the top of the slab.
8. A 45° chamfer shall be cut 1⁄4" (6) to 1⁄2" (12) deep at the top of the slab along both sides of the transverse sealant reservoir.
9. The top edges of the compression seal shall be in full contact with the slab sides.

Joint and Sealant Details

DELTAWARE DEPARTMENT OF TRANSPORTATION

PCC PAVEMENT

STANDARD NO. P-1 0200

SHT. 2 OF 5

APPROVED

RECOMMENDED

CHIEF ENGINEER

DESIGN ENGINEER

DATE: 11/01/05

SEAL: N.T.S.

DATE: 11/01/05

SCALE: N.T.S.
Dowel & Tie Bar Placement Tolerances
PLAN

* - PROPOSED LOCATIONS FOR TRANSVERSE JOINTS SHALL EXACTLY MATCH
THE ALIGNMENT OF THE FINAL EXISTING OR RELOCATED TRANSVERSE
JOINTS IN ALL IMMEDIATELY ADJACENT LANES.

NOTES:
1. WHEN REPAIRING EXISTING TRANSVERSE JOINTS, THE PATCH SHALL EXTEND A MINIMUM OF 24"(600)
 THROUGH THE EXISTING JOINT, WHICH WILL RELOCATE THE JOINT.
2. PROPOSED LOCATIONS FOR TRANSVERSE JOINTS, WHEN NOT ALIGNED WITH THE FINAL EXPECTED
 TRANSVERSE JOINT LOCATIONS IN THE IMMEDIATELY ADJACENT LANES, SHALL BE OFFSET A MINIMUM
 OF 24"(600) FROM THE AFOREMENTIONED JOINTS.
3. THE LONGITUDINAL JOINT ALIGNMENT SHALL BE STRAIGHT AND
 CONTINUOUS THROUGH THE REPAIRED AREA.

FULL DEPTH PATCH

DELAWARE
DEPARTMENT OF TRANSPORTATION

P.C.C. PAVEMENT PATCHING

STANDARD NO. P-2 (2001) SHT. 1 OF 5 APPROVED RECOMMENDED

04/08/2001
DELAWARE DEPARTMENT OF TRANSPORTATION

P.C.C. PAVEMENT PATCHING

APPROVED ___________________________ 1/04/05

RECOMMENDED ___________________________ 1/04/05

DATE 1/04/05

SECTION A-A

SECTION B-B

SECTION C-C

FULL DEPTH PATCH

TRANSVERSE CONSTRUCTION JOINT USED ON
JOINTS BETWEEN EXISTING PAVEMENT AND PATCH

TOP OF EXISTING HOT-MIX PAVEMENT

TOP OF EXISTING P.C.C. SLAB

BOTTOM OF EXISTING P.C.C. SLAB

P.C.C. PATCH

ADDITIONAL P.C.C. PATCH

REQUIRED FOR UNDERCUT AREAS

ADDITIONAL P.C.C. PATCH

REQUIRED FOR UNDERCUT AREAS

SEALANT RESERVOIR

SEE SHEET 3

SEALANT RESERVOIR

SEE SHEET 3

TOP OF EXISTING P.C.C. SLAB

BOTTOM OF EXISTING P.C.C. SLAB

P.C.C. PATCH

ADDITIONAL P.C.C. PATCH

REQUIRED FOR UNDERCUT AREAS

SEALANT RESERVOIR

SEE SHEET 3

TRANSVERSE SAW-CUT USED FOR
JOINTS LOCATED WITHIN THE PATCH

Dowel Support Basket Required for this Application

(REFER TO STANDARD CONSTRUCTION DETAIL FOR P.C.C. PAVEMENT)

TOP OF SLAB

0.5T

0.5L

Dowel

GROUT

RETENTION DISK

ADDITIONAL P.C.C. PATCH

REQUIRED FOR UNDERCUT AREAS

TOP OF EXISTING P.C.C. SLAB

BOTTOM OF EXISTING P.C.C. SLAB

P.C.C. PATCH

ADDITIONAL P.C.C. PATCH

REQUIRED FOR UNDERCUT AREAS

SEALANT RESERVOIR

SEE SHEET 3

SEALANT RESERVOIR

SEE SHEET 3

SECTION C-C

TRANSVERSE CONSTRUCTION JOINT USED ON
JOINTS BETWEEN EXISTING PAVEMENT AND PATCH

FULL DEPTH PATCH

VARIES

4" (100) - 8" (200)

6" (150) MAX

VARIES

4" (100) - 8" (200)

6" (150) MAX
SEALANT DETAIL - LONGITUDINAL JOINT

SEALANT DETAIL - TRANSVERSE SAW-CUT JOINT

SEALANT DETAIL - TRANSVERSE CONSTRUCTION JOINT

NOTES:

1. AS DIMENSIONED, THE WIDTH OF THE TRANSVERSE SEALANT RESERVOIR IS APPLICABLE WHEN THE TEMPERATURE OF THE PAVEMENT SURFACE IS BETWEEN 60°F (16°C) AND 80°F (27°C). WHEN THE TEMPERATURE IS BELOW 60°F (16°C), THE SEALANT RESERVOIR SHALL BE CUT 3/8" (2) WIDER.

2. "T" REFERS TO THE EXISTING "AS-builtin SLAB THICKNESS.

3. TOLERANCE ON ALL JOINT SEALANT DETAIL DIMENSIONS SHOWN WITHOUT RANGES SHALL BE PLUS/3/32, MINUS 0".

4. THE TOP EDGES OF THE CONTACT SURFACES OF THE SEALANT MATERIAL ON BOTH SIDES OF THE JOINT RESERVOIR SHALL BE AT THE SAME ELEVATION.
Dowel & Tie Bar Placement Tolerances

Vertical Translation

Vertical Rotation

Horizontal Translation

Longitudinal Translation

Horizontal Rotation

Full Depth Patch
NOTE: CLOSED CELL POLYETHYLENE FOAM SHALL BE THE SAME WIDTH AS THE JOINT AND 2"(50) IN DEPTH AFTER THE CONCRETE IN THE REPAIR AREA HAS ACHIEVED THE SPECIFIED STRENGTH. THE FOAM SHALL BE REMOVED AND REPLACED WITH BACKER ROD AND HOT-POUR SEALANT MEETING ALL APPLICABLE STANDARD DETAILS AND SPECIFICATIONS.
NOTES:
1. TYPE 1 CONDUIT JUNCTION WELLS SHALL BE PRECAST CONCRETE; AT LEAST ONE HOLE IN PRECAST WELLS WILL BE OF A 5" (125) DIAMETER COMPLETELY THROUGH THE WALL. UNUSED HOLES SHALL BE PLUGGED.

2. TYPE 2 AND TYPE 3 CONDUIT JUNCTION WELLS SHALL BE BRICK AND WILL CONFORM TO STANDARD SPECIFICATIONS FOR BRICK MASONRY. JOINTS SHALL BE CONCRETE TYPE.
 TYPE 2 WALLS WILL BE A NOMINAL 4" (100) THICK. TYPE 3 WALL WILL BE A NOMINAL 8" (200) THICK.

3. TYPE 2 AND TYPE 3 CONDUIT JUNCTION WELLS SHALL NOT BE PLACED UNDER ANY TYPE OF PAVEMENT.

4. ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC., WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE SAME. INSTALLATION IN UNEPAVED AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO DRAIN AWAY FROM CONDUIT JUNCTION WELL.
CAST IRON COVERS

CAST IRON FRAME

NOTES:

1. TYPE 4 CONDUIT JUNCTION WELL SHALL BE PRECAST CONCRETE. AT LEAST ONE HOLE IN PRECAST WELLS WILL BE OF A 5" (125) DIAMETER COMpletely THROUGH THE WALL. UNUSED HOLES SHALL BE PLUGGED.

2. ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC. WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE SAME. INSTALLATION IN UNPAVED AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO DRAIN AWAY FROM CONDUIT JUNCTION WELL.

SECTION A-A

SECTION B-B

PLAN SYMBOL

DEL. 57 STONE

CONDUIT

CONDUIT

4" (100) CONCRETE WALL

4" (100) CONCRETE WALL

GALV. CONDUIT

GALV. CONDUIT

3" (75) MIN.

3" (75) MAX.

BUSHING

FLUSH

20" (508) X 40" (1016) X 20" (508)

40" (1016) X 64" (1626)

24" (610) MIN.

24" (610) MIN.

10/30/2002

07/11/2002

DELAWARE

DEPARTMENT OF TRANSPORTATION

CONDUIT JUNCTION WELL, TYPE 4

SHT. 1 OF 1

APPROVED

RECOMMENDED
NOTES:
5. TYPE 5 CONDUIT JUNCTION WELL SHALL BE PRECAST CONCRETE. AT LEAST ONE HOLE IN PRECAST WELLS WILL BE OF A 5"(125) DIAMETER COMPLETELY THROUGH THE WALL. UNUSED HOLES SHALL BE PLUGGED.

20. ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC. WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE SAME. INSTALLATION IN UNPAVED AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO DRAIN AWAY FROM CONDUIT JUNCTION WELL.

SECTION A-A

PLAN SYMBOL

DELAWARE
DEPARTMENT OF TRANSPORTATION

CONDUIT JUNCTION WELL, TYPE 5

STANDARD NO. T-5 (2002)
SHT. 1 OF 1
APPROVED
RECOMMENDED
01/31/2002
CONCRETE CABINET BASE

- Ground Rods 3" (75) Max.
- 2" (50) Conduit
- Expansion Bolt (6)
- Install Insulating Bushings at this end of conduit.
- Raked Concrete Base
- Raised Concrete Base
- CABINET BASES (TYPES 'M' & 'P')
- CONCRETE CABINET BASE

PLAN VIEW

SECTION A-A

CONCRETE CABINET BASE

EXPANSION BOLT (6)
ROUND BASE

SQUARE BASE

NOTE: BASE DEPENDENT ON POLE AND EQUIPMENT TO BE ATTACHED.

DELWARE
DEPARTMENT OF TRANSPORTATION

POLE BASES

STANDARD NO. T-5 (2002) SHT. 1 OF 3

APPROVED

RECOMMENDED
SECTION A-A

NOTES:
1. UNDERGROUND CONDUIT ENDS SHALL BE CAPPED WITH A GALVANIZED THREADED CONDUIT PLUG UNLESS CONNECTED TO AN EXISTING CONDUIT.
2. PLACE 2 EACH 6" (150) x 1/2" (13) P.V.C., SCHEDULE 40 (TYP) VENTS IN THE GROUT AS DIRECTED IN THE FIELD BY THE ENGINEER.

GROUND ROD (3/4" X 24") (600)

EXISTING CONDUIT

DIRECTION OF MAST ARM

14-#8 (#25) BARS

74" (1850)

GROUND ROD (3/4"X6) X 24"(600)

EMBED 8" (200) INTO UNDISTURBED SOIL

FOUNDATION DETAILS

2 1/4" (60) CONDUIT SWEEP

*8 (#25) BARS

(TYP)

*3 (M0) TIES

(TYP)

30" (760) DIA.

FINISHED GRADE

3 1/4"

3 1/4"

3 1/4"
NOTES: a. STUB POST TO BE SUPPLIED BY THE DEPARTMENTS TRAFFIC, ENGINEERING, AND MANAGEMENT SECTION.

SECTION A-A

PLAN SYMBOL

DELTA ADESHADEMENT OF TRANSPORTATION

SIGN FOUNDATION

STANDARD NO. T-7 (2002) SHT. 1 OF 1

APPROVED

01/31/2002
NOTES:
1. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING THE CONDUIT AGAINST ANY POSSIBLE DAMAGE IN PAVING OPERATIONS.
2. THE WEATHERPROOF FITTING SHALL CONSIST OF A GALVANIZED 3/4" CB1 COUPLING CONTAINING A STEEL THREADED REDUCING BUSHING 3/4" CB1 TO 1/2" CB1 AND A 1/2" CB1 WATERTIGHT CONNECTOR FOR SERVICE ENTRANCE CABLE.
3. THE LEAD-IN WIRE SHALL BE RUN THROUGH THE RUBBER OF THE WEATHERPROOF FITTING.

DETAIL A - TYPICAL INSTALLATION UNDER INTEGRAL CURB AND GUTTER

DETAIL B - TYPICAL INSTALLATION UNDER CURBING

DETAIL C - TYPICAL INSTALLATION WITHOUT CURBING

PLAN SYMBOL

DEL. 57 STONE

DEL. 57 STONE
1. Saw cuts for wire slot construction shall be extended beyond the corners so that the slot is full depth at turn points. A forty-five (45) degree angle shall be cut 12" (300) back from the point of the extended corner.

2. The diagonal cut shall be stopped approximately 2" (50) from the corner to prevent the triangular portion of the pavement from breaking.

3. A maximum of two loop detectors can be spliced to one lead-in cable. The detail illustrates the method of splicing two loop detectors (Loop #1 and Loop #2) to a lead-in cable.

4. Loop detector shall be centered in travel lane.

Wire Slot Construction

Section A - A

Section B - B

Details for Installing Loop Detector Wire

Splicing Detail

Plan Symbol

Notes:

- 4/8 Shielded Lead-In Cable (Home Run)
- 4/8 Shielded Loop Detector Wire
- Black
- White
- Green
- Red
- Sealant
- Backer Rod

Typical 1 Loop Detector

Approved

Recommended

Delaware Department of Transportation

Standard No. T-9 (2000)

Sht. 1 of 1

Recommended

Scale: N.T.S.

Date: 1/10/05

Engineer:

Design Engineer:

Notation:

1. Saw cuts for wire slot construction shall be extended beyond the corners so that the slot is full depth at turn points. A forty-five (45) degree angle shall be cut 12" (300) back from the point of the extended corner.

2. The diagonal cut shall be stopped approximately 2" (50) from the corner to prevent the triangular portion of the pavement from breaking.

3. A maximum of two loop detectors can be spliced to one lead-in cable. The detail illustrates the method of splicing two loop detectors (Loop #1 and Loop #2) to a lead-in cable.

4. Loop detector shall be centered in travel lane.

Notation:

1. Saw cuts for wire slot construction shall be extended beyond the corners so that the slot is full depth at turn points. A forty-five (45) degree angle shall be cut 12" (300) back from the point of the extended corner.

2. The diagonal cut shall be stopped approximately 2" (50) from the corner to prevent the triangular portion of the pavement from breaking.

3. A maximum of two loop detectors can be spliced to one lead-in cable. The detail illustrates the method of splicing two loop detectors (Loop #1 and Loop #2) to a lead-in cable.

4. Loop detector shall be centered in travel lane.
1. Saw cuts for wire slot construction shall be extended beyond the corners so that the slot is full depth at turn points. A forty-five (45) degree angle shall be cut 1' (0.3m) back from the point of the extended corner.

2. The diagonal cut shall be stopped approximately 2" (50) from the corner to prevent the triangular portion of the pavement from breaking.

3. A maximum of two loop detectors can be spliced to one lead-in cable. The detail illustrates the method of splicing two loop detectors (Loop #1 and Loop #2) to a lead-in cable.

4. Loop detector shall be centered in travel lane.
SPAN WIRE ATTACHMENT BETWEEN POLES

1. **Wood Pole**
 - Strain Plate
 - Guy Hook
 - Galvanized Screw

2. **Match Line A - A**
 - Wood Pole
 - Strain Plate
 - Guy Hook
 - Galvanized Screw

3. **Top View**
 - Span Wire
 - Service Sleeve
 - Span Wire

Notes:
- Span wire attachment between metal poles is the same as shown for wood poles except that the strain plates and guy hooks are not used. For detail see T-14 Sheet 2 - "Dead End Messenger Wire Attachment, Metal Poles".

Plan Symbol:
- X
- ⊗

Recommended
- [Signature]

Approved
- [Signature]

Date: 1/10/05

Scale: NTS

Date: 7/21/05

Delaware Department of Transportation

Standard No.: T-12 (2004)

Sheet: 1 of 2
DELAWARE DEPARTMENT OF TRANSPORTATION

DEAD END MESSENGER WIRE ATTACHMENT

NOTES:
1. INSTALLATION METHOD SHOWN FOR DEAD END MESSENGER WIRE ATTACHMENT TO METAL POLES SHALL BE USED FOR SPAN WIRE ATTACHMENT BETWEEN METAL POLES.

WOOD POLES

METER POLES

PLAN SYMBOL

WOOD POLE

SERVICE WEDGE CLAMP

Messerer Wire

Messerer Clamp

Lashing Wire

Cable Spacer

Electrical Cable

SERVICE SLEEVE

Messerer Wire

Messerer Clamp

6'450

1'025

30' (762)

MESSENGER WIRE

GALVANIZED

GALVANIZED

3-BOLT \(\frac{1}{4} \) X 1"

GUAY CLAMPS

2 REQUIRED

GALVANIZED

GALVANIZED

\(\frac{1}{4} \) X 1"

WASHER

WITH \(\frac{1}{4} \) HOLE

METER POLE

GALVANIZED

GALVANIZED

\(\frac{1}{4} \) X 1"

WASHER

WITH \(\frac{1}{4} \) HOLE

MESSENGER WIRE

\(\frac{1}{4} \) " WRAPS

AROUND POLE

36" (914) MIN.

1" (25)

1). INSTALLATION METHOD SHOWN FOR DEAD END MESSENGER WIRE ATTACHMENT TO METAL POLES SHALL BE USED FOR SPAN WIRE ATTACHMENT BETWEEN METAL POLES.

DEAD END MESSENGER WIRE ATTACHMENT

SHT. 2 OF 2

APPROVED

RECOMMENDED

DELTA RAY

DATE

1/1/05

1/1/05

DATE

2/27/04
NOTES:
1. TYPE 6 CONDUIT JUNCTION WELL SHALL BE PRECAST POLYMER CONCRETE.
2. ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC. WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE SAME. INSTALLATION IN UNPAVED AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO DRAIN AWAY FROM THE CONDUIT JUNCTION WELL.
3. POLYMER CONCRETE COVERS SHALL BE THE HEAVY-DUTY TYPE WITH A DESIGN LOAD OF 10,000 LBS (4500 KG) OVER A 10'' (250) SQUARE.
NOTES:
1. TYPE T CONDUIT JUNCTION WELL SHALL BE PRECAST POLYMER CONCRETE.
2. ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC. WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE SAME. INSTALLATION IN UNPAVED AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO ORN AWAY FROM THE CONDUIT JUNCTION WELL.
3. POLYMER CONCRETE COVERS SHALL BE THE HEAVY DUTY TYPE WITH A DESIGN LOAD OF 5,000 LBS (4,600 kg) OVER A 6" (152.5) SQUARE.
POLYMER CONCRETE WITH A HEAVY-WEAVE FIBERGLASS REINFORCEMENT

\frac{3}{8}" x 3\frac{1}{2}" x 4'1000' PULL SLOT

\frac{3}{8}" x 16 UNC HEX BOLT w/ WASHERS TO BE SECURED INTO THE WELL FRAME

NOTES:
1. TYPES 8 & 10 CONDUIT JUNCTION WELLS SHALL BE PRECAST POLYMER CONCRETE.
2. ALL CONDUIT JUNCTION WELLS CONSTRUCTED WITHIN PAVEMENT, SIDEWALKS, ETC. WILL BE CONSTRUCTED FLUSH WITH THE SURFACE OF THE SAME. INSTALLATION IN UNPAVED AREAS WILL BE CONSTRUCTED ABOVE GRADE AND GRADED TO DRAIN AWAY FROM THE CONDUIT JUNCTION WELL.
3. POLYMER CONCRETE COVERS SHALL BE THE HEAVY-DUTY TYPE WITH A DESIGN LOAD OF 5,000 LBS (6000 Kgf) OVER A 10" (255) SQUARE.

DELTA DOT

60" (1525)

\frac{3}{8}" (10)

FINISHED GRADE (PAVEMENT)

FINISHED GRADE (UNPAVED)

2" (51)

SECTION A-A

TABLE

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
<th>TYPE 8</th>
<th>TYPE 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>47\frac{3}{4}" (1200)</td>
<td>35\frac{3}{4}" (950)</td>
</tr>
<tr>
<td>B</td>
<td>30\frac{3}{8}" (765)</td>
<td>24\frac{3}{8}" (600)</td>
</tr>
<tr>
<td>C</td>
<td>48\frac{3}{8}" (1260)</td>
<td>37\frac{3}{8}" (950)</td>
</tr>
<tr>
<td>D</td>
<td>32\frac{3}{8}" (825)</td>
<td>26\frac{3}{8}" (660)</td>
</tr>
<tr>
<td>E</td>
<td>45\frac{3}{8}" (1150)</td>
<td>33\frac{3}{8}" (850)</td>
</tr>
<tr>
<td>F</td>
<td>28\frac{3}{8}" (710)</td>
<td>22\frac{3}{8}" (570)</td>
</tr>
<tr>
<td>G</td>
<td>36 (914)</td>
<td>30 (762)</td>
</tr>
<tr>
<td>H</td>
<td>33" (830)</td>
<td>21" (533)</td>
</tr>
<tr>
<td>FRAME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>58" (1473)</td>
<td>46" (1168)</td>
</tr>
<tr>
<td>J</td>
<td>40" (1016)</td>
<td>34" (864)</td>
</tr>
</tbody>
</table>
NOTES:

1. UPRIGHT CONFIGURATION SHALL BE USED FOR MOUNTING ON MAST ARMS, SIGNAL HEAD FRAMEWORKS AND PEDESTALS.
2. UPRIGHT MOUNTING HARDWARE SHALL BE SUPPLIED BY THE DEPARTMENT.
3. Teflon tape shall be applied to threads before mounting.
4. Route the lead-in cable through the metal cap and the rubber plug. Replace the metal cap, sealing the cable entry port. Tighten the metal cap so the cable will not slide through the rubber plug.
NOTES:
1. INVERTED CONFIGURATION SHALL BE USED FOR SPAN MOUNT.
2. SPAN WIRE MOUNTING HARDWARE SHALL BE SUPPLIED BY THE DEPARTMENT.
3. TEFLOM TAPE SHALL BE APPLIED TO THREADS BEFORE MOUNTING.
4. ROUTE THE LEAD-IN CABLE THROUGH THE METAL CAP AND THE RUBBER PLUG.
 REPLACE THE METAL CAP, SEALING THE CABLE ENTRY PORT. TIGHTEN THE METAL CAP SO THE CABLE WILL NOT SLIDE THROUGH THE RUBBER PLUG.