Table of Contents

Chapter One—Road Design Manual

Introduction .. 1-1

Chapter Two—Design Controls

2.1 Objectives of Design Controls ... 2-1
2.2 Levels of Service 2-2
2.3 Speed-Related Controls 2-3
 2.3.1 Operating Speed 2-3
 2.3.2 Running Speed 2-3
 2.3.3 Design Speed 2-3
2.4 Traffic-Related Controls 2-4
 2.4.1 Traffic Volumes 2-4
 2.4.2 Traffic Composition 2-5
 2.4.3 Traffic Projections 2-5
 2.4.4 Traffic Data Documentation 2-5
 2.4.5 Highway Capacity 2-6
 2.4.6 Design Vehicles 2-6
2.5 Other Design Controls 2-7
 2.5.1 Terrain Characteristics 2-7
 2.5.2 Functional Classification 2-7
 2.5.2.1 Roadway Types within the Classification System 2-8
 2.5.3 Manual Application 2-9
 2.5.4 Access Control 2-10
 2.5.5 Pedestrians 2-11
 2.5.6 Bicycle Facilities 2-11
 2.5.7 Economics 2-11
 2.5.8 Safety 2-12
 2.5.9 Environment 2-14

Chapter Three—Design Standards

3.1 Basis for Standards 3-1
 3.1.1 AASHTO Policies and Guides 3-2
 3.1.2 Application of Standards 3-2
 3.1.3 Departure from Standards 3-3
 3.1.3.1 New Construction and Reconstruction Projects 3-4
 3.1.3.2 Intermediate Projects 3-5
 3.1.3.3 Preventive Maintenance Projects 3-5
 3.1.3.4 Miscellaneous Improvement Projects 3-6
 3.1.4 Determination of Standards 3-10
3.2 Standards Based on Design Speed .. 3-10
 3.2.1 Selection of Design Speed 3-10
 3.2.2 Curvature and Superelevation .. 3-12
 3.2.3 Stopping Sight Distance 3-13
 3.2.4 Passing Sight Distance 3-13
3.3 Standards Based on Traffic Volumes 3-14
 3.3.1 Number of Lanes 3-14
 3.3.2 Surfaced Lane Widths 3-15
 3.3.3 Shoulder Width 3-15
 3.3.4 Surfaced Shoulder Width 3-16
 3.3.5 Side Slopes 3-16
 3.3.6 Horizontal Clearance and Clear Zone 3-17
 3.3.6.1 Horizontal Clearance 3-17
 3.3.6.2 Clear Zone 3-17
 3.3.7 Grades 3-17
 3.3.8 Bridges 3-18
 3.3.9 Medians 3-18

Chapter Four—Cross Section Elements

4.1 Surfacing Elements 4-1
 4.1.1 Surface Type 4-1
 4.1.2 Lane and Shoulder Widths 4-1
 4.1.3 Median Shoulders—Divided Highways 4-2
 4.1.4 Cross Slopes 4-2
 4.1.5 Shoulder Cross Sections 4-3
 4.1.5 Shoulder Cross Sections 4-3
 4.1.5.1 Grass Shoulders 4-5
 4.1.6 Curbs 4-5
4.2 Grading Cross Section 4-6
 4.2.1 Subgrade Cross Slopes 4-6
 4.2.2 Subgrade Width 4-6
 4.2.3 Subgrade Widening for Guardrail 4-6
 4.2.4 Side Slopes 4-6
 4.2.4.1 Side Slopes within the Clear Zone 4-7
 4.2.4.2 Front Slopes 4-11
 4.2.4.3 Back Slopes 4-12
 4.2.4.4 Transverse Slopes 4-12
 4.2.5 Roadside Ditches 4-12
 4.2.5.1 Trapezoidal Ditch 4-13
 4.2.5.2 V-Ditch 4-13
4.3 Medians 4-13
 4.3.1 Flush Medians 4-16
 4.3.2 Curbed Medians 4-16
 4.3.3 Depressed Medians 4-16
 4.3.4 Median Barriers 4-17
 4.3.5 Median Openings 4-17
Chapter Five—Alignment and Superelevation

5.1 Horizontal Alignment 5-1
- 5.1.1 General Criteria.......................... 5-1
- 5.1.2 Control Line Locations 5-2
- 5.1.3 Types of Curves 5-3
- 5.1.4 Sight Distance on Horizontal Curves.............. 5-4
 - 5.1.4.1 Stopping Sight Distance.... 5-4
 - 5.1.4.2 Passing Sight Distance 5-5
- 5.1.5 Coordination with Vertical Alignment 5-5

5.2 Vertical Alignment 5-6
- 5.2.1 General Criteria.......................... 5-6
- 5.2.2 Maximum Grades 5-6
- 5.2.3 Minimum Grades 5-7
- 5.2.4 Minimum Ditch Grades 5-7
- 5.2.5 Critical Length of Grade 5-7
- 5.2.6 Climbing Lane Criteria............. 5-8
- 5.2.7 Vertical Curves........................... 5-8
- 5.2.8 Vertical Curve Design............... 5-8
- 5.2.9 Passing Sight Distance 5-9
- 5.2.10 Gradeline Elevations 5-10
- 5.2.11 Urban Grade Design 5-12

5.3 Superelevation 5-13
- 5.3.1 Rates of Superelevation............ 5-13
- 5.3.2 Superelevation Transition 5-14
- 5.3.3 Axis of Rotation 5-15

Chapter Six—Drainage and Stormwater Management

6.1 Introduction 6-1

6.2 Design Responsibilities 6-2

6.3 Design Criteria......................... 6-3

6.4 Design Procedures..................... 6-3

6.5 Design Process 6-10
- 6.5.1 Legal Requirements and Agency Coordination.............. 6-10
- 6.5.2 Data Collection 6-10
- 6.5.2.1 Initial Phase 6-10
- 6.5.3 Drainage Plans 6-11
 - 6.5.3.1 Preliminary Drainage Plan 6-11
 - 6.5.3.2 Final Drainage Plan 6-11
- 6.5.4 Drainage Report 6-12

6.6 Hydrology 6-12
- 6.6.1 References 6-12
- 6.6.2 Design Frequency 6-13
- 6.6.3 Peak Discharge 6-14
 - 6.6.3.1 The Rational Method 6-14

6.7 Open Channel Flow 6-24
- 6.7.1 References............................. 6-24
- 6.7.2 Overview 6-25
- 6.7.3 Roadside Ditches 6-26
 - 6.7.3.1 Design Criteria 6-26
 - 6.7.3.2 Design Procedure 6-27
- 6.7.4 Ditch Erosion Control 6-28
 - 6.7.4.1 Overview 6-28
 - 6.7.4.2 Design Procedure for Flexible Linings.............. 6-32

6.8 Pavement Drainage And Storm Drains .. 6-34
- 6.8.1 References 6-34
- 6.8.2 Pavement Drainage 6-35
 - 6.8.2.1 Manning’s Roughness Coefficient.............. 6-35
 - 6.8.2.2 Longitudinal Slope 6-35
 - 6.8.2.3 Cross Slope.......................... 6-36
 - 6.8.2.4 Allowable Water Spread 6-36
 - 6.8.2.5 Curb and Gutter Flow 6-36
 - 6.8.2.5.1 Gutter With Uniform Cross Slope 6-36
 - 6.8.2.5.2 Gutter With Composite Cross Slope 6-37
 - 6.8.2.5.3 Gutter Flow Design Tables 6-40
 - 6.8.2.6 Drainage Inlets 6-40
 - 6.8.2.6.1 Inlet Types 6-40
 - 6.8.2.6.2 Inlet Grates 6-40
 - 6.8.2.6.3 Hydraulic Characteristics of Inlets 6-41
 - 6.8.2.6.4 Inlet Interception on Continuous Grade 6-41
 - 6.8.2.6.5 Inlet Interception in Sag Locations 6-43
 - 6.8.2.6.6 Inlet in Open Channel 6-45
 - 6.8.2.6.7 Factor of Safety for Clogging of Grate Inlets .. 6-45
 - 6.8.2.6.8 Inlet Locations 6-45
 - 6.8.2.6.8.1 Design Criteria 6-45
 - 6.8.2.6.8.2 Spacing of Drainage Inlets 6-46
 - 6.8.3 Storm Drains 6-47
 - 6.8.3.1 Design Criteria 6-48
 - 6.8.3.2 Designing Storm Drains 6-50
 - 6.8.3.2.1 Open Channel Design 6-50
 - 6.8.3.2.2 Hydraulic Gradieline Procedure 6-51
 - 6.8.3.2.3 Sag Points 6-51
 - 6.8.3.2.4 Hydraulic Procedures 6-51
 - 6.8.4 Flared End Sections 6-52
Table of Contents

Chapter Eight—System Design

8.5.1 Objectives 8-7
8.5.2 Design Responsibility 8-7
8.5.3 General Warrants and

 Considerations 8-7
8.5.4 General Lighting Design

 Considerations 8-8

8.6 Signing and Striping Guidelines 8-9

Chapter Nine—Pavement Selection

9.1 Design Responsibility 9-1
9.1.1 Soil Survey/Pavement Evaluation

 Request 9-1
9.1.2 Soil and Pavement Design Report 9-3
9.1.3 Pavement Selection 9-3

9.2 Pavement Terminology 9-4

9.3 Pavement Design Factors 9-5

 9.3.1 Pavement Design Life 9-7
9.3.2 Pavement Performance 9-7
9.3.3 Traffic 9-7
9.3.4 Roadbed Soil 9-7
9.3.5 Paving Materials 9-8
 9.3.5.1 Flexible Pavements 9-9
 9.3.5.2 Rigid Pavements 9-9
9.3.6 Temperature Changes 9-10
9.3.7 Drainage 9-10
9.3.8 Reliability 9-10
9.3.9 Life-Cycle Costs 9-11
9.3.10 Shoulder Design 9-11

9.4 Design for New Construction or

 Reconstruction 9-11

 9.4.1 Design Variables 9-11
9.4.2 Performance Criteria 9-11
9.4.3 Materials Properties for Structural

 Design 9-11
9.4.4 Pavement Structural

 Characteristics 9-12
9.4.5 Reinforcement Variables 9-12

9.5 Structural Design for Flexible

 Pavements 9-12

 9.5.1 Subbase Course 9-13
9.5.2 Base Course 9-13
9.5.3 Surface Course 9-13
9.5.4 Structural Number (SN) 9-14
 9.5.5 Layer Coefficients 9-14
9.5.6 Minimum Lift Thickness 9-15
9.5.7 Temporary Pavements 9-15

9.6 Design for Rigid Pavements 9-15

 9.6.1 Subbase—Effective Modulus of

 Subgrade Reaction 9-16
9.6.2 Pavement Slab Thickness 9-16
9.6.3 Joints 9-16

9.7 Pavement Design for Rehabilitation

 of Existing Pavements 9-17

 9.7.1 Rehabilitation Concepts 9-17
9.7.2 Types of Distress 9-19
 9.7.2.1 Asphalt Pavements 9-19
 9.7.2.2 Concrete Pavements 9-19
9.7.3 Drainage Survey 9-21
9.7.4 Restoration 9-21
 9.7.4.1 Full-depth Repair 9-21
 9.7.4.2 Partial-depth Repair 9-22
 9.7.4.3 Slab Stabilization and Slab

 Jacking 9-22
9.7.4.4 Diamond Grinding, Grooving

 and Pavement Milling 9-23
9.7.4.5 Pressure Relief Joints 9-23
9.7.4.6 Load Transfer Restoration .. 9-23
9.7.4.7 Joint and Crack Sealing 9-24
9.7.4.8 Surface Treatments 9-24
9.7.4.9 Subdrainage Improvements ... 9-24
9.7.4.10 Shoulder Improvements ... 9-25
9.7.5 Recycling 9-25
 9.7.5.1 Recycling Rigid Pavements 9-25
 9.7.5.1.1 Rubblization 9-26
9.7.5.2 Surface Recycling of

 Bituminous Pavements 9-28
9.7.5.3 In-Place Recycling of

 Bituminous Pavements 9-28
9.7.5.4 Hot-Mix Recycling of

 Bituminous Pavements 9-28
9.7.6 Resurfacing 9-28
 9.7.6.1 Types of Overlays and Their

 Functions 9-28

Chapter Ten — Miscellaneous

Design

10.1 Context Sensitive Design 10-1

 10.1.1 Types of Projects 10-1
10.1.2 Design Standards 10-2
10.1.3 Operational Consistency 10-3
10.1.4 Design Criteria 10-3
10.1.5 Design Controls 10-3
 10.1.5.1 Functional Classification 10-4
 10.1.5.2 Speed Selection 10-4
10.1.5.3 Traffic Considerations 10-5
10.1.5.4 Level of Service 10-6
 10.1.6 Highway Geometric Elements—

 Design and Safety

 Considerations 10-6
10.1.6.1 Horizontal Alignment 10-6

iv Table of Contents

July 2011
10.1.6.2 Vertical Alignment 10-7
10.1.6.3 Sight Distance 10-7
10.1.6.4 Cross Section Elements 10-8
10.1.6.5 Intersections 10-10
10.1.7 Maintainability 10-10

10.2 Traffic Calming 10-10

10.3 Traffic Barriers 10-11
10.3.1 Design Options 10-11
10.3.2 Guidelines 10-12
10.3.3 Longitudinal Barriers 10-12
10.3.4 Barrier Placement 10-14
10.3.4.1 Lateral Offset 10-15
10.3.4.2 Terrain Effects 10-15
10.3.4.3 Flare Rate 10-16
10.3.4.4 Length of Need 10-16
10.3.4.5 Approach Barriers for Opposing Traffic 10-18
10.3.4.6 Roadside Slopes for Approach Barriers 10-18
10.3.5 Median Barriers 10-19
10.3.6 Impact Attenuators 10-21

10.4 Curbs 10-21
10.4.1 Types of Curb 10-21
10.4.2 Placement of Curb 10-21
10.4.2.1 Curbs at Development Entrances 10-22
10.4.2.2 Curbs at Commercial Entrances 10-22
10.4.3 Access for the Disabled 10-23

10.5 Right-of-Way 10-23
10.5.1 Right-of-Way Configuration .. 10-23
10.5.2 Easements 10-24
10.5.3 Right-of-Way Monuments 10-24

10.6 Fencing 10-24

10.7 Utility Adjustments 10-25
10.7.1 Survey Plans 10-25
10.7.2 Preliminary Plans 10-25
10.7.3 Semi-Final Plans 10-26
10.7.4 P.S. and E. Plans 10-26

10.8 Sidewalks 10-26
10.8.1 Goals and Objectives 10-26
10.8.2 Regulatory Requirements 10-27
10.8.3 Design Approach 10-28
10.8.4 Guidelines for Assessing the Need and Criteria 10-28
10.8.5 Warrants 10-30
10.8.6 Design Guidance for Safe Pedestrian Circulation 10-31
10.8.7 Pedestrian Accident History .. 10-31
10.8.8 Existing Site Accommodation 10-32
10.8.9 Pedestrian Facility Layout 10-32
10.8.9.1 Sidewalk Requirements .. 10-32
10.8.9.2 Curb Ramp Requirement 10-33
10.8.9.3 Det. Warn. Requirements 10-35
10.8.10 Maintenance Responsibility 10-35
10.8.11 Reminders 10-36
10.8.12 Funding Alternatives 10-36

10.9 Bicycle Facilities 10-37
10.9.1 Facility Selection 10-39
10.9.2 Facility Types 10-39
10.9.2.1 Design Approach 10-40
10.9.3 Shared Roadway 10-40
10.9.4 Signed Shared Roadway 10-42
10.9.5 Bike Lanes 10-42
10.9.5.1 Intersections with Bike Lanes 10-45
10.9.6 Shared Use Path 10-45
10.9.6.1 Separation Between Shared Use Paths and Roadways .. 10-46
10.9.6.2 Width and Clearance 10-47
10.9.6.3 Design Speed 10-47
10.9.6.4 Grades 10-48
10.9.6.5 Horizontal Alignment 10-48
10.9.6.6 Sight Distance 10-49
10.9.6.7 Intersections 10-50
10.9.6.8 Restriction of Motor Vehicle Traffic 10-52
10.9.6.9 Other Design Issues 10-52

10.10 Bus Stops 10-52
10.10.1 Location Criteria 10-52
10.10.2 Bus Stop Design 10-53
10.10.2.1 Bus Shelter Setback 10-55

10.11 Park-and-Ride Lots 10-56
10.11.1 Location 10-63
10.11.2 Design 10-63
10.11.3 Access 10-64
10.11.4 Internal Circulation 10-64
10.11.5 Buses 10-65
10.11.6 Kiss-and-Ride Facilities ... 10-65
10.11.7 Pedestrians 10-65
10.11.8 Bicycles and Motorcycles .. 10-65
10.11.9 Disabled 10-66
10.11.10 Parking Dimensions and Lot Layout 10-66

Appendix A — Landscaping and Reforestation Act Implementation
A1.0 Introduction A-1
A2.0 Purpose A-2
A3.0 Definitions A-3
A4.0 Procedures A-3
A4.1 Mitigation and Needs Analysis ... A-3
A4.1.1 No Removal or Cutting of
Figures

- 2-1 Guidelines for Selection of Design Levels of Service: 2-3
- 2-2 Functional Classification: 2-7
- 3-1 Corresponding Design Speeds in US Customary and Metric Units: 3-2
- 3-2 Types of Construction: 3-4
- 3-3 Required Design Exception Documentation: 3-5
- 3-4 Design Exception Request: 3-7
- 3-5 Design Control Checklist: 3-8
- 3-6 Design Criteria Form: 3-9
- 3-7 Typical Section Nomenclature: 3-11
- 4-1 Pavement Cross Slopes for Traveled Way: 4-2
- 4-2 Typical Cross Slopes: 4-4
- 4-3 Cross Section Side Slopes: 4-9
- 4-4 Side Slope Criteria: 4-10
- 4-5 Trapezoidal Ditch Section: 4-14
- 4-6 V-Ditch Section: 4-15
- 5-1 Minimum Radius for Open Highway Conditions and Superelevation Rate of 4%: 5-3
- 5-2 Minimum Radius for Open Highway Conditions and Superelevation Rate of 6%: 5-3
- 5-3 Restricted Passing Sight Distance Criteria: 5-10
- 5-4 Types of Vertical Curves: 5-11
- 5-5 Criteria for Crest Vertical Curve Design: 5-12
- 5-6 Criteria for Sag Vertical Curve Design: 5-12
- 5-7 Runoff Locations that Minimize Vehicle Lateral Motion: 5-15
- 5-8 Superelevation Runoff Elements: 5-16
- 5-9 Minimum Superelevation Runoff and Tangent Runout Lengths (US Customary): 5-17
- 5-10 Minimum Superelevation Runoff and Tangent Runout Lengths (Metric): 5-17
- 5-11 Superelevation Attainment Traveled Way Revolved about Centerline: 5-18
- 5-12 Superelevation Attainment Traveled Way Revolved about Inside and Outside Edge: 5-19
- 5-13 Superelevation Attainment Traveled Way with Straight Cross Slope: 5-20
- 5-14 Rainfall Intensity Estimates (in/hr) for Rational Method: 5-18
- 5-15 Drainage Design (US Customary) for TR-55 Analysis: 5-18
- 5-16 Drainage Design (Metric) for TR-55 Analysis: 5-18
- 5-17 Permissible Velocities for Open Channels: 6-29
- 5-18 Manning’s Roughness Coefficient (n): 6-31
6-18 Channel Lining Design
 Computation Chart 6-33
6-19 Inlet and Gutter Sections 6-38
6-20 Gutter and Inlet Design using
 HEC-22 6-39
6-21 Type I Grate Frontal Flow
 Interception Factor, Rf 6-42
6-22 Side Flow Interception Factor, Rs 6-42
6-23 General Guidelines for Culvert
 Outfall Treatment 6-49
6-24 Minimum Pipe Slope to Ensure a
 3.0 ft/s Velocity in a Storm
 Drain Flowing Full 6-50
6-25 Circular Pipe Conveyance Factor
 (K) 6-53
6-26 Wall Thickness and Approximate
 Weight of Circular Concrete
 Pipe Class IV with Type B
 Wall Thickness 6-53
6-27 Manning’s Roughness Coefficients
 (n) for Pipe 6-53
6-28 Friction Slope (ft/ft) for n=0.12,
 Full Flow 6-54
6-29 Culvert Size Determination Using
 HEC-5 6-58
6-30 Design Steps for a Wet-
 Extended Detention Stormwater
 Pond. 6-70
6B-1 Watershed for Rational Method
 Example B6-1
6B-2 Flow Path of Watershed B6-2
6B-3 Surface Characteristics of
 Watershed B6-3
6B-4 Watershed for NRCS Method
 Example B6-4
6B-5 Watershed Data B6-5
6B-6 Flow Path of Watershed B6-6
6B-7 Coefficients for Unit Peak
 Discharge B6-7
6B-8 Schematic Diagram for Roadside
 Ditch B6-10
6B-9 Roadside Ditch Design Form –
 Completed for Example 4 B6-14
6B-10 Roadside Ditch Design Form B6-15
6B-11 Typical Section, Plan and Profile B6-16
6B-12 Inlet Spacing Computation Form B6-20
6B-13 Storm Drain Computation Form . B6-23
6B-14 Hydraulic Gradeline Computation
 Form B6-26
6B-15 Location of Pond B6-27
6B-16 Watershed for Example 6 B6-28
6B-17 Flow Path of Watershed B6-28
6B-18 Curve Number Computations ... B6-30
6B-19 Impervious Area Computations B6-30
6B-20 Trial 1 (L=290 ft & W=145 ft)
 Stage Storage B6-34
6B-21 Stage-Storage, Trial 2 (L=260 ft
 & W=130 ft) B6-34
7-1 Design Vehicle Turning Terminology .. 7-4
7-2 Minimum Turning Radii for
 Selected Design Vehicles 7-6
7-3 Minimum Radii at Inner Edge of
 Traveled Way for Intersection
 Curves – Free Flow 7-6
7-4 Intersection Edge-of-Traveled Way
 Layout Using Simple Curves 7-7
7-5 Intersection Edge-of-Traveled Way
 Design Layout using
 3-Centered Compound Curves 7-8
7-6 Design Widths for Turning Roadways
 (US Customary) 7-10
7-7 Design Widths for Turning
 Roadways [Metric] 7-11
7-8 Typical Island Layout - Rural Areas ... 7-13
7-9 Typical Island Layout - Urban Areas... 7-14
7-10 Sight Distance Triangles-Elements
 for At-Grade Intersections 7-15
7-11 Minimum Stopping Sight Distance
 for Turning Roadways at
 Intersections 7-16
7-12 Guide for Need for Left-Turn Lanes
 on Two-Lane Highways 7-19
7-13 Typical Turning Lane Design For
 Two-Lane Two-Way Roadways....... 7-21
7-14 Graphical Guide for Left-Turn
 Lane Need-40-mph
 [60-km/h] Operating Speed 7-22
7-15 Graphical Guide for Left-Turn
 Lane Need-50-mph
 [80-km/h] Operating Speed 7-23
7-16 Graphical Guide for Left-Turn
 Lane Need-60-mph
 [100-km/h] Operating Speed 7-24
7-17 Auxiliary Lane Design (Right And
 Left Turn Lane) Open
 Roadway Conditions 7-25
7-18 Minimum Deceleration Lengths
 (Without Taper) for Design of
 Exit Lanes – Urban Locations 7-26
7-19 Minimum Acceleration Lengths
 (Without Taper) for Design
 of Entering Lanes – Urban
 Locations 7-26
7-20 Preferred Median End Shapes Based
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-21 Median Nose Design Alternatives</td>
<td>7-31</td>
</tr>
<tr>
<td>7-22 Desired Design Dimensions for Median Openings Using Bullet-Nose Ends</td>
<td>7-32</td>
</tr>
<tr>
<td>7-23 Typical Crossover Design for U-turns and Minor Intersections on Rural Divided Roadways</td>
<td>7-35</td>
</tr>
<tr>
<td>8-1 Signing Guide—Junction of Dual Route/Signalized Road</td>
<td>8-10</td>
</tr>
<tr>
<td>8-2 Signing Guide—Junction of Dual Route/Major to Minor Stop Road</td>
<td>8-11</td>
</tr>
<tr>
<td>8-3 Signing Guide—Junction of Two Routes/Two-Way Signalized Road</td>
<td>8-12</td>
</tr>
<tr>
<td>8-4 Signing Guide - Crossovers</td>
<td>8-13</td>
</tr>
<tr>
<td>8-5 Typical Intersection Pavement Markings</td>
<td>8-14</td>
</tr>
<tr>
<td>8-6 Typical Lane Reduction Transition Markings and Signing – Typical Multi-Lane, Two-Way Markings with Single Lane, Two-Way Left Turn Channelization</td>
<td>8-15</td>
</tr>
<tr>
<td>8-7 Typical Pavement Markings at Railroad-Highway Grade Crossing</td>
<td>8-16</td>
</tr>
<tr>
<td>8-8 Typical One Way and Divided Highway Marking Applications</td>
<td>8-17</td>
</tr>
<tr>
<td>8-9 Typical Expressway/Freeway Acceleration and Deceleration Lane Pavement Markings</td>
<td>8-18</td>
</tr>
<tr>
<td>8-10 Typical Entrance and Exit Ramp Pavement Markings</td>
<td>8-19</td>
</tr>
<tr>
<td>8-11 Guidelines for Advance Placement of Warning Signs (US Customary)</td>
<td>8-20</td>
</tr>
<tr>
<td>8-12 Guidelines for Advance Placement of Warning Signs [Metric]</td>
<td>8-20</td>
</tr>
<tr>
<td>9-1 Pavement Terminology</td>
<td>9-6</td>
</tr>
<tr>
<td>9-2 Layer Coefficients</td>
<td>9-15</td>
</tr>
<tr>
<td>9-3 Lift Thickness</td>
<td>9-15</td>
</tr>
<tr>
<td>10-1 Guardrail Warrants for Embankments</td>
<td>10-13</td>
</tr>
<tr>
<td>10-2 Dynamic Guardrail Deflection</td>
<td>10-16</td>
</tr>
<tr>
<td>10-3 Approach Barrier Layout Variables</td>
<td>10-17</td>
</tr>
<tr>
<td>10-4 Approach Barrier Layout for Opposing Traffic</td>
<td>10-19</td>
</tr>
<tr>
<td>10-5 Median Barrier Warrants for High-Speed Divided Highways</td>
<td>10-20</td>
</tr>
<tr>
<td>10-6 Typical Bike Lane Cross Sections</td>
<td>10-44</td>
</tr>
</tbody>
</table>