

ISBOI PROUET

Waryanid / Dalaware Lina to $8: 11$
Soutit of tha GeD Banal
Naw Bastia Eounity, Dalaware

us zui sprur ratad

April 2012

US 301 SPUR ROAD
APRIL 2012
2011 MONITORING REPORT

EXECUTIVE SUMMARY

The US301 Spur Road, the subject of this traffic monitoring report, is part of Delaware Department of Transportation's (DeIDOT's) US 301 Project (see Figure 1). In November 2007, after nearly four decades of study, a preferred alternative was selected, as described in the US 301 Final Environmental Impact Statement. The Federal Highway Administration subsequently approved the Record of Decision on April 30, 2008 which authorized DeIDOT to begin final design on the preferred alternative, known as the "Green North + Spur" alternative. In January 2010, the $145^{\text {th }}$ General Assembly of Delaware passed House Resolution No. 35 directing the Delaware Department of Transportation to "sit down over the next 6 weeks to develop and negotiate to final resolution a bill to amend the existing epilogue language, with such bill mandating certain trigger mechanisms for the Spur Road." As a result of that coordination the US 301 Spur Road Monitoring Program was developed to monitor growth in traffic and land use development, and to evaluate the operational characteristics of key roads and intersections. This monitoring program will provide decision makers with data to make an informed decision on the appropriate timing for the construction of the US 301 Spur Road.

The monitoring program consists of the annual collection and analysis of daily traffic volumes on select roadways, peak period intersection volumes, vehicular delay at unsignalized intersections, crash data, and land use development data. Each year, the data will be analyzed and compared with data and results from prior years. This report represents a summary of the second year of the monitoring program based on data collected in 2011. This report compares the newly collected data with the data collected and summarized in 2010, the first year of the monitoring program. The key findings and data in the report are summarized below:

Land Development:

- There were approximately 16,000 new housing units in various stages of planning in the study area. This represents an increase of 800 units compared to 2010. New Castle County has approved approximately 10,050 of these housing units, of which approximately 1,750 (17.5\%) were completed by the end of 2011 . This represents an increase of 200 completed units compared to 2010. An additional 5,000 housing units, including approximately 350 units in Cecil County, MD, are part of developments which are still in the earlier planning stages (pending approval). This represents decrease of 1,100 units compared to 2010, attributable partly to an increase in the number of expired applications as well as a shift in the number of units that had previously been planned but were subsequently approved and potentially completed. Lastly, approximately 890 more housing units were proposed in developments in New Castle County for which approval had expired by the end of 2011. This represents an increase of 490 housing units compared to 2010.
- Of the developments described above, there are sixteen (16) residential developments in various stages of completion within the Town of Middletown. Seven of these developments were essentially complete by the end of 2007, with an eighth (Middletown Village) essentially completed by the end of 2010. There were 57 new housing units completed between 2010 and 2011. The 16 developments total 7,728 housing units, including approximately 4,100 singlefamily detached homes, 500 duplexes, 1,900 townhouses, and 1,200 apartments / condos.
- A total of 2,179 of the proposed 7,728 housing units within the Town of Middletown were constructed by the end of 2007 and 2,951 of the proposed 7,728 housing units were constructed by the end of 2010. A total of 3,008 of the proposed 7,728 housing units within the Town of Middletown had been constructed by the end of 2011. This represents an increase of 829
housing units over the four year period between 2007 and 2011, and includes 57 new units completed between 2010 and 2011.
- The ongoing commercial development within the study area consists of various uses, including office space, retail, and light industrial development (including warehouse space). By the end of 2011, developers had submitted plans for over 8.1 million square feet of commercial space in Southern New Castle County. It should be noted that one significant development not included in the totals is the Amazon.com distribution center, which was approved on January 9, 2012. New Castle County had previously approved approximately 5.8 million square feet of commercial space, with another 2.3 million square feet of commercial space pending approval. Of the approved development, at least 915,000SF (16\%) had been constructed by the end of 2011.

Traffic:

- Roadway volumes at seven (7) locations are being monitored and recorded annually.
- Five (5) signalized intersections along the existing US301 Corridor between the Summit Bridge and SR 299 are counted and analyzed annually to monitor the degradation (or improvement) in operation of each intersection. The following trends were observed in 2010 and 2011:
o US 301 at Old Summit Bridge Road: The intersection operated at LOS A during both the AM and the PM peak hours for 2010 and 2011.
o US 301 at Old Summit Bridge Road: The intersection operated at LOS A during both the AM and the PM peak hours for 2010 and 2011.
o US 301 at Armstrong Corner Road / Marl Pit Road: The intersection operated at LOS C during both the AM and the PM peak hours in 2010; however, the intersection operated at LOS D during both the AM and the PM peak hours in 2011. The increase in delay was attributed to a temporary closure of Cedar Lane Road (for bridge maintenance and repair) at the time the intersection turning movement count was taken.
o US 301 at SR 71: The intersection operated at LOS C during the AM peak hour and LOS D during the PM peak hour for 2010 and 2011.
o US 301 at SR 299: The intersection operated at LOS D during both the AM and the PM peak hours for 2010 and 2011.
- Three (3) unsignalized intersections are counted and analyzed annually to monitor the degradation (or improvement) in operation of each intersection and the following trends were observed in 2010 and 2011:
o There was relatively minimal changes in delay at the intersection of US 301 and Old School House Road.
o Delay increased substantially (by 21 seconds per vehicle) to nearly a minute of delay per vehicle at the intersection of US 301 and Keenan Auto Body. This increase in delay may be attributable to the temporary Cedar Lane Road closure.
o Delay increased moderately at the intersection of Choptank Road and Clayton Manor Drive (by 8 seconds per vehicle); however, the average delay per vehicle remains fairly low at 18 seconds per vehicle.

Highway Safety:

- Average Accident Rates were calculated for eight (8) roadway segments in the vicinity of the US301 Corridor to provide a relative measure of comparison to the Statewide and New Castle County average crash rates. It should be noted that DeIDOT Safety Section was not able to provide 2011 Statewide and New Castle County crash rates and they will be updated in future reports when the data becomes available.
- In general, the number of crashes has decreased between 2010 and 2011 at most of the locations being monitored. The exceptions were the curve between Summit Bridge and Bethel Church Road, where the number of crashes increased from 2 to 5 , Bunker Hill Road between Choptank Road and US 301, where the number of crashes increased from 5 to 7, and SR 1 between Roth Bridge and US 13 / SR 1 Split (Tybouts Corner), where the number of crashes increased from 53 to 69.
- In addition, roadway segments in the project area that are reported by DeIDOT's Hazard Elimination Program (HEP) and High Risk rural Roads Program (HRRRP) will be monitored each year during construction.

Incident Management:

- DeIDOT will track the number of significant incidents that occur each year on several key roads in the Middletown region south of the C\&D Canal, and on SR 1 between the Roth Bridge and I95. Specifically, the monitoring program will identify any incidents that resulted in detours that could have been accommodated more safely and efficiently on the Spur Road rather than on the local road network.
- Since 2004, there have been 56 incidents that have resulted in 170 or more hours of detours that could have utilized the Spur Road as an alternate detour route.

Construction Projects:

- DeIDOT and the Town of Middletown will likely have several other active maintenance and construction projects occurring at various times during the duration of the US 301 Spur Monitoring Program that could affect the traffic data being collected. DeIDOT identified three (3) active construction projects in the US 301 project area in 2011. As part of the monitoring program, DeIDOT will continue to monitor all active roadway construction projects in the US 301 project area from south of Middletown to approximately the Chesapeake and Delaware Canal.

TABLE OF CONTENTS

INTRODUCTION

US 301 Project History 1
Monitoring Program 2
Annual Monitoring Program 2
Public Involvement 3
Annual Report 3
MONITORING PROGRAM
Land Development 4
Residential Development. 5
Commercial Development 6
Traffic 7
Roadway Volumes 7
Signalized Intersections 10
Unsignalized Intersections 13
Highway Safety 14
Hazard Elimination Program 17
Incident Management 18
Construction Projects 18
TABLES
Table 1 Average Daily Traffic for Select Roadway Segments along US 301 8
Table $2 \quad$ Truck Percentage for Select roadway Segments along US 301 10
Table $3 \quad$ Peak Hour LOS at Select Signalized Intersections along US 301 11
Table 4 Average Accident Rates 15
Table 52010 Hazard Elimination Program Locations 17
Table 62010 High Risk Rural roads Program Locations 17
Table $7 \quad$ Projects in the US 301 Project Area 18

TABLE OF CONTENTS

FIGURES

Figure 1 US 301 Project Area Overview 3
Figure 2 Major Development Location Map 5
Figure 3 Residential Development in Southern New Castle County 5
Figure 4 Non-Residential Development in Southern New Castle County 7
Figure 5 Count Locations. 8
Figure 6 ADT for Summit Bridge (US301) 8
Figure 7 ADT for Choptank Road 8
Figure 8 ADT for Roth Bridge (SR1) 9
Figure 9 ADT for St. George's Bridge (US13) 9
Figure 10 ADT for Existing US301 (north of Mt. Pleasant) 9
Figure 11 ADT for Existing US301 (south of Mt. Pleasant) 9
Figure 12 Total Delay at Select Signalized Intersections during AM Peak 12
Figure 13 Total Delay at Select Signalized Intersections during PM Peak 12
Figure 14 Total Delay at Select Unsignalized Intersections during PM Peak 14
Figure 15 Comparion of Crashes for Select Roadways in US 301 Corridor 16

APPENDICES

Appendix A Proposed Development for Southern New Castle County
Appendix B Residential Construction in the Town of Middletown
Appendix C US 301 Corridor Crash Reports
Appendix D Significant Incidents on SR 1 and Other Roadways in the Middletown Region Appendix E Peak Hour Traffic Volume and SYNCHRO Capacity Reports

INTRODUCTION

The US301 Spur Road, the subject of this traffic monitoring report, is part of Delaware Department of Transportation's (DeIDOT's) US 301 Project (see Figure 1). US 301 is a 1,100 mile interstate route stretching between Sarasota, Florida and New Castle County, Delaware. The tolls and congestion on I95 combined with the comparatively low traffic volumes on US 301, have made US 301 an attractive alternative route for vehicles, including trucks, traveling between Washington D.C. and Wilmington, Delaware. The Delaware Department of Transportation has been studying the US 301 corridor since the 1960's. The need for improved capacity and safety has been heightened over the past two decades by the rapid pace of development throughout the Middletown-Odessa-Townsend area and the resulting transformation of southern New Castle County from rural farmland to growing suburbia.

In November 2007, after nearly four decades of study, a preferred alternative was selected, as described in the US 301 Final Environmental Impact Statement. The Federal Highway Administration subsequently approved the Record of Decision on April 30, 2008 which authorized DeIDOT to begin final design on the preferred alternative, known as the "Green North + Spur" alternative. In January 2010, the $145^{\text {th }}$ General Assembly of Delaware passed House Resolution No. 35 directing the Delaware Department of Transportation to "sit down over the next 6 weeks to develop and negotiate to final resolution a bill to amend the existing epilogue language, with such bill mandating certain trigger mechanisms for the Spur Road." As a result of that coordination the US 301 Spur Road Monitoring Program was developed to monitor growth in traffic and land use development, and to evaluate the operational characteristics of key roads and intersections. This monitoring program will provide decision makers with data to make an informed decision on the appropriate timing for the construction of the US 301 Spur Road.

This report represents a summary of the second year of the monitoring program based on data collected in 2011. This report compares the newly collected data with the data collected and summarized in 2010, the first year of the monitoring program. The 2011 report also serves as a basis for comparison with data collected in future years.

US 301 Project History

In the mid-1960's, recognition of the regional significance of the US 301 corridor led the Delaware Department of Transportation (DeIDOT) to investigate opportunities to improve mobility in the corridor. An earlier study resulted in the location selection and subsequent construction of the existing Summit Bridge by the US Army Corps of Engineers (ACOE) in the 1950's. Since that time, southern New Castle County has been transformed from a rural and largely agricultural area to a suburban residential area for commuters employed in Newark, Wilmington, Philadelphia, and throughout the I-95 corridor in Delaware, northern Maryland, southern Pennsylvania, and Southern New Jersey. The Levels, southwest of Middletown, once known as Delaware's most productive agricultural area, is currently evolving into the Westown community of Middletown, and job growth is expanding with a full range of commercial and professional employers supporting the influx of new residents in southern New Castle County. As southern New Castle County continued to develop, the solution to improving mobility in the growing region remained elusive.

In 2004, a new phase of the US 301 project planning effort was initiated, which was focused on addressing the safety and mobility needs of the region with consideration of the findings of a prior study conducted in 2000, the Greater Route 301 Major Investment Study. A traffic survey conducted in October 2004 showed that approximately sixty-five percent (65%) of all northbound traffic originating south of the C\&D Canal is destined for the northeast to Wilmington, Philadelphia, New Jersey, and points beyond. Thirty-Five percent (35\%) of the traffic has destinations to the north towards Newark and Pennsylvania. However, the traffic survey, which asked motorists to document their actual travel routes, showed that despite the majority of northbound destinations being to the northeast, approximately sixty percent (60\%) of motorists currently continue north on US 301/SR 896 and then east on I-95, rather than using a more direct east-west route south of the canal.

With careful consideration of the local and regional travel patterns, projected land use growth of the region, a wide range of other social and environmental resources, and significant public input (5 rounds of public workshops and more than 100 community meetings with concerned parties), DeIDOT performed a detailed evaluation of several alternatives, including a no-build option and a variety of capacity improvement options. Those efforts resulted in the publication of a DEIS and a recommended alternative in November 2006. One year later, in November 2007, after nearly four decades of study, a preferred alternative was selected, as described in the US 301 Project Development Final Environmental Impact Statement (FEIS). The Federal Highway Administration subsequently approved the Record of Decision on April 30, 2008 which authorized DeIDOT to begin final design on the preferred alternative, known as the "Green North + Spur" alternative.

Monitoring Program

In January 2010, the $145^{\text {th }}$ General Assembly of Delaware passed House Resolution No. 35 directing the Delaware Department of Transportation to "sit down over the next 6 weeks to develop and negotiate to final resolution a bill to amend the existing epilogue language, with such bill mandating certain trigger mechanisms for the Spur Road." As a result of that coordination the US 301 Spur Road Monitoring Program was developed to monitor growth in traffic and land use development, and to evaluate the operational characteristics of key roads and intersections. This monitoring program will provide decision makers with data to make an informed decision on the appropriate timing for the construction of the US 301 Spur Road.

The US 301 Spur Road Monitoring Program consists of three (3) primary components: an Annual Monitoring Program, Public Involvement and the publication of an Annual Summary Report.

Annual Monitoring Program

The US 301 Monitoring Program was created to monitor transportation and land use growth patterns before, during and after construction of the US 301 Mainline Project, as applicable. The monitoring program consists of the annual collection and analysis of daily traffic volumes on select roadways, peak period intersection volumes, vehicular delay at unsignalized intersections, crash data, and land use development data. Each year, the data will be analyzed and compared with data and results from prior years.

Public Involvement

Public involvement has been and continues to be an important part of the US 301 Project. For the US 301 Spur Road Monitoring Program, the annual report will be made publicly available each year, and the updates on the Monitoring Program will be presented annually at a WILMAPCO public meeting. Public Involvement will also be solicited at key decision making points, such as the Secretary of Transportation's decision to recommend that construction of the US 301 Spur Road should begin.

The US 301 Spur Road Monitoring Program was presented at the FY2012 - FY2015 Transportation Improvement Program (TIP) Public Workshop on February 28, 2011 at WILMAPCO, attended by DeIDOT staff. The Spur Monitoring Program information was summarized on a large display board that provided an overview of the program including the goals and purpose, and details on the initial data collected on Land Development, Safety, and Traffic.

A US 301 Public Workshop was also held on September 6, 2011 to present updates to the US 301 Project, including the US 301 Spur Road. Information on the workshop can be found on the project web site: www.us301.deldot.gov.

A WILMAPCO Public Workshop was not held in February 2012; therefore, there was not an efficient opportunity to present the key findings of the monitoring in 2011. It should be noted that there was very little change in the data and findings between 2010 and 2011. Next year's updates, will likely be presented along with the 2011 updates at the 2013 WILMAPCO workshop.

Annual Report

This report contains a summary of the most recent data collected and analyzed as part of the US 301 Spur Road Monitoring Program. These reports will continue to be developed on an annual basis before, during and after the construction of the US 301 mainline. DeIDOT will present these reports to the General Assembly in April of each year. The reports will provide decision makers, including the Secretary of Transportation, data to make an informed decision on the appropriate timing for the construction of the Spur Road.

MONITORING PROGRAM

Land Development

The explosive growth in housing and retail in southern New Castle County over the past 10 to 15 years has led to increasing congestion on the local road network, including US 301, SR 299, and SR 896. A number of new residential and retail developments have been completed and many others are in varying stages of construction or planning. As these other planned developments come on line, additional demands will be placed on the transportation infrastructure in the Middletown area.

In addition to residential and retail developments, Base Realignment and Closure (BRAC) activities at the Aberdeen Proving Ground in Hartford County, Maryland was completed in September 2011. BRAC relocated six organizations within Army Team C4ISR (Command, Control, Communications, Computer Intelligence, Surveillance and Reconnaissance) from Fort Monmouth, New Jersey to the Aberdeen Proving Ground, added 6,500 net jobs, and renovated space totaling 2.8 million square feet.

It should also be noted that the Town of Middletown approved the final plans for the proposed Amazon.com distribution center on Monday, January 9, 2011. The proposed 1 million SF distribution center will be constructed on the parcel immediately south of the intersection of US 301 and Merrimac Avenue with a fourth leg to be added to the intersection to provide access to the site. It is anticipated that the new distribution center will add 850 full-time jobs as well as more than 2,000 seasonal jobs for up to three months twice a year.

Development activity in New Castle County is monitored by the New Castle County Department of Land Use, the Wilmington Area Planning Council (WILMAPCO), and DeIDOT. Development activity in Middletown is monitored by the Town of Middletown, WILMAPCO, and DeIDOT. WILMAPCO is also tasked with developing short and long-term land use projections for New Castle County. These projections are constrained on a statewide and countywide basis by the population and employment forecasts provided by the Delaware Population Consortium. WILMAPCO is responsible for projecting how much of that growth will occur in different parts of the county. The primary geographic unit for these projections is the Traffic Analysis Zone (TAZ).

DeIDOT and WILMAPCO have committed to tracking the land development activities in a portion of southern New Castle County and an adjoining portion of Cecil County, Maryland as part of this Monitoring Report. The specific area where development will be tracked annually is depicted in Figure 2. This area represents a total of 34 TAZs in Southern New Castle County and two (2) TAZs in Cecil County, Maryland. Development activity will be monitored in these areas for the length of the project to determine when the surrounding roadway infrastructure may need to be improved based on past, present and near-term development trends.

Summary of Development Activity in Southern New Castle (DE) and Cecil (MD) Counties

WILMAPCO took the lead in coordinating with the various jurisdictions and compiling the land use data for this report. In 2011, a total of sixty-five (65) ongoing commercial and residential developments were in various stages of the planning or building process within the study areas of southern New Castle and Cecil Counties. Fifty-three (53) of these developments are located in southern New Castle County and twelve (12) developments are located in Cecil County, Maryland. For each development, a description of the development proposal, the

current status of the development in the planning process, and what portions (if any) were constructed by the end of 2011 were provided. A full list of the developments can be found in Appendix A. The residential developments range from small subdivision developments with less than 10 homes to major developments with over 1,500 household units planned. The proposed commercial developments range from smaller properties with 15,000 to $20,000 \mathrm{SF}$ to the major commercial centers, such as the 1.7 million SF Scott Run Business Park. A number of proposals call for mixed-use development, combining residential and commercial activities at one site.

Residential Development Summary

The ongoing residential development within the study area consists of a variety of housing types, including single-family detached dwellings, townhomes, and apartments. The various residential developments were classified in differing stages of completion: Built, Approved but Unbuilt, or Pending (includes Exploratory and Expired Proposals). Figure 3 depicts the number of housing units built, approved but unbuilt, and pending at the end of 2010 and 2011.

Figure 3: Residential Development in Study Area
As shown in Figure 3, at the end of 2011, there were approximately 16,000 new housing units in various stages of planning in the study area. This represents an increase of 800 units compared to 2010. New Castle County has approved approximately 10,050 of these housing units, of which approximately 1,750 (17.5%) were completed by the end of 2011 . This represents an increase of 200 units compared to 2010 . An additional 5,000 housing units, including approximately 350 units in Cecil County, MD, are part of developments which are still in the earlier planning stages (pending approval). This represents decrease of 1,100 units compared to 2010, attributable partly to an increase in the number of expired applications as well as a shift in the number of units that had previously been planned but were subsequently approved and potentially completed. Lastly, approximately 890 more housing units were proposed in developments in New Castle County for which approval had expired by the end of 2011. This represents an increase of 490 housing units compared to 2010.

US 301 SPUR ROAD

Snapshot - Residential Construction in the Town of Middletown: Of the developments described above, there are sixteen (16) residential developments in various stages of completion within the Town of Middletown. Seven of these developments were essentially completed by the end of 2007, with an eighth (Middletown Village) essentially completed by the end of 2010. There were 57 new housing units completed between 2010 and 2011. The 16 developments include a total of 7,728 housing units, including approximately 4,100 single-family detached homes, 500 duplexes, 1,900 townhouses, and 1,200 apartments / condos. WILMAPCO was able to provide data on the number of units built within each of these residential developments between 2007 and 2011:

- By the end of 2007, a total of 2,179 (28\%) of the proposed 7,728 housing units within the Town of Middletown had been constructed.
- By the end of 2010, a total of 2,951 (38%) of the proposed 7,728 housing units within the Town of Middletown had been constructed.
- By the end of 2011 , a total of 3,008 (39%) of the proposed 7,728 housing units within the Town of Middletown had been constructed.
- This represents an increase of 829 housing units over the four year period between 2007 and 2011 and includes 57 new units completed between 2010 and 2011.

Appendix B lists respectively the number of apartments, duplexes, townhouses, and single family homes that have been built and remain to be built in the Town of Middletown.

Commercial (Non-Residential) Development

The ongoing commercial development within the study area consists of various uses, including office space, retail, and light industrial development (including warehouse space). The commercial developments were divided into Approved and Pending (Exploratory) categories. By the end of 2011, developers had submitted plans for over 8.1 million square feet of nonresidential space in southern New Castle County. It should be noted that one significant development not included in these total is the Amazon.com distribution center, which was approved on January 9, 2012. This represents an increase of 1.3 million square feet, compared to 2010 and does not include the newly proposed Amazon.com distribution center. The County had previously approved approximately 5.8 million square feet, with another 2.3 million square feet pending approval. Of the approved development, at least 915,000 SF (16\%) had been constructed by the end of 2011 . This included the 415,000 SF expansion of the distribution center for Johnson Controls, Inc., which is located in the Westown Business Park. Currently, no non-residential developments are proposed in the two (2) TAZs in Cecil County that are included in the study area. Figure 4 depicts and approved and pending commercial development in the study area.

US 301 SPUR ROAD

Figure 4: Non-Residential Development in Study Area

Traffic

Traffic is an important part of the US 301 Spur Road Monitoring Program. The US 301 project team will gather a variety of traffic data annually on key roads within the project corridor to determine the current level of traffic on these roads and to track growth trends throughout the region. Specifically, the following traffic data is being collected each year: mainline roadway volume counts, intersection turning movement counts, and vehicular delays at unsignalized intersections. The data collected in 2010 serves as the base year data for the US 301 Spur Road Monitoring Program. Intersection turning movement counts and mainline volume counts will be performed at each location shown in Figure 5 every year during the construction of the new US 301 alignment from the MD/DE state line to SR 1. This annual traffic monitoring will show how traffic volumes change over time as new development continues to occur.

Roadway Volumes

Mainline volume counts were collected along six (6) key roadways within the US 301 project area during October 2011 (see Figure 5). Automatic traffic recording equipment, commonly called "tube counters", were used to record the volume and classification of vehicles that pass over the equipment in each direction. This data is used to determine the Average Daily Traffic (ADT) and percentage of trucks travelling on each roadway segment (see Tables 1 and 2). In general, daily traffic volumes have increased modestly at all but one of the locations studied between 2010 and 2011. The two locations with the largest increase were US 301 at the Summit Bridge (a 17\% increase) and on SR 1 at the Roth Bridge (a 7\% increase). Peak hour volumes exhibited similar trends.

It should be noted that there was a roadway closure on Cedar Lane Road between Marl Pit Road and SR 71 when the counts were taken. The closure was necessary to repair the Cedar Lane Bridge, which is located on Cedar Lane Road north of SR 71 and may have affected traffic volume on US 301 between SR 896 and SR 71.

Table 1:
Average Daily Traffic for Select Roadway Segments along US 301

Roadway Link	2010 ADT*	2011 ADT	2012 ADT	2013 ADT	2014 ADT	2015 ADT	2016 ADT
Summit Bridge (US 301)	27,660	32,360					
Choptank Rd, North of Churchtown Rd	3,990	4,090					
SR 1 at Roth Bridge	73,690	78,740					
US 13 at St. Georges Bridge	10,600	9,070					
US 301/SR 896, North of Mt. Pleasant	23,450	23,810					
US 301, between Armstrong Corner Rd and Mt. Pleasant	21,830	22,460					
US 301 Bypass	-	-					

*Data was collected for a seven (7) day period in October 2011. Seasonal Adjustments were not made to these volumes because: a) October/November volumes are typically representative of the annual average volumes, and b) because volumes will be collected during the same months in subsequent years.

Figure 6: Average Daily Traffic (ADT) for Summit Bridge (US 301)

2030 EIS Forecast: 6,200 2030 "Without Spur" Forecast: 14,500

Figure 7: Average Daily Traffic (ADT) for Choptank Rd, North of Churchtown Rd

US 301 SPUR ROAD

2030 EIS Forecast: 104,300 2030 "Without Spur" Forecast: 106,300

Figure 8: Average Daily Traffic (ADT) for Roth Bridge (SR 1)

2030 EIS Forecast: 27,900 2030 "Without Spur" Forecast: 37,200

Figure 10: Average Daily Traffic (ADT) for Existing US 301 North of Mt. Pleasant

2030 EIS Forecast: 19,600 2030 "Without Spur" Forecast: 19,700

Figure 9: Average Daily Traffic (ADT) for St. George's Bridge (US 13)

2030 EIS Forecast: 21,300
2030 "Without Spur" Forecast: 27,900

Figure 11: Average Daily Traffic (ADT) for Existing US 301, between Armstrong Corner Rd and Mt. Pleasant

US 301 SPUR ROAD
APRIL 2012

Table 2: Average Daily Truck Volume and Average Daily Truck Percentage* on Select Roadway Segments along US 301

	2010		2011		2012		2013		2014		2015		2016	
Roadway Link	$\begin{aligned} & \text { OU } \\ & \frac{\text { E }}{0} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { o을 } \\ & \text { 른 } \\ & \text { o̊ } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \frac{1}{5} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\begin{aligned} & \text { d } \\ & \stackrel{5}{0} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \text { de } \\ & \text { 른 } \\ & \text { o } \end{aligned}$	$\begin{aligned} & \text { © } \\ & \frac{\text { B }}{0} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \text { 른 } \\ & \text { o } \end{aligned}$		9 $\frac{9}{0}$ 른 0	$\begin{aligned} & \text { d } \\ & \stackrel{1}{ㄹ} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \frac{0}{2} \\ & \text { 을 } \\ & \text { 른 } \\ & \text { o } \end{aligned}$	$\begin{aligned} & \text { © } \\ & \frac{1}{5} \\ & \hline 0 \\ & \hline \end{aligned}$	
Summit Bridge (US 301)	2,210	8	3,100	10										
Choptank Rd, North of Churchtown Rd	490	12	560	14										
SR 1 at Roth Bridge	7,860	11	9,020	11										
US 13 at St. Georges Bridge	570	5	440	5										
US 301/SR 896, North of Mt. Pleasant	1,970	8	1,840	8										
US 301, between Armstrong Corner Rd and Mt. Pleasant	2,910	13	3,000	13										
US 301 Bypass	-	-	-	-	-	-	-	-	-	-	-	-	-	-

*Trucks include FHWA Class 5-13, representing all trucks larger than and including two-axle single unit trucks, such as UPS delivery trucks and DART Paratransit buses.

Signalized Intersections

Peak period turning movement counts are being collected on an annual basis at five (5) key signalized intersections in the project area. These five (5) locations, which are all located along the existing US 301 Corridor between Middletown (SR 299) and the Summit Bridge, will be analyzed annually to monitor the degradation (or improvement) in operation of each intersection. The five (5) locations, summarized in Figure 5, and Table 3, are the signalized intersections of existing US 301 / SR 896 at Old Summit Bridge Road, Boyds Corner Road, Armstrong Corner Road, North Broad Street, and Bunker Hill Road. Peak hour turning movement counts were performed at these intersections during October 2011. This data was used to create a model of the corridor using Synchro (Version 8.0.801.563), a macroscopic traffic analysis software application used to evaluate the operational performance characteristics of signalized and unsignalized intersections. The results of these analyses are summarized in Table 3 and Figures 12 and 13.

For this monitoring report, the operational performance of signalized intersections is presented in terms of average delay per vehicle and a corresponding letter grade, typically referred to as "Level of Service" (LOS). Level of Service "A" (delay $\leq 10 \mathrm{sec} / \mathrm{vehicle}$) represents the best possible operating conditions, whereas LOS "F" (delay > $80 \mathrm{sec} / \mathrm{veh}$) represents congested conditions corresponding with traffic that has reached or exceeded available

US 301 SPUR ROAD
APRIL 2012
2011 MONITORING REPORT
intersection capacity, resulting in relatively high average delay per vehicle and higher likelihood that vehicles will take more than one signal cycle to clear the intersection.

The results of the 2010 and 2011 intersection capacity analyses are summarized in Table 3 and the following trends were observed between 2010 and 2011:

- US 301 at Old Summit Bridge Road: The intersection operated at LOS A during both the AM and the PM peak hours for 2010 and 2011. No significant changes were observed.
- US 301 at SR 896: The intersection operated at LOS C during both the AM and the PM peak hours and no significant changes observed. No significant changes were observed.
- US 301 at Armstrong Corner Road / Marl Pit Road: The intersection operated at LOS C during both the AM and the PM peak hours in 2010; however, the intersection operated at LOS D during both the AM and the PM peak hours in 2011. The increase in delay was attributed to the Cedar Lane Road closure in effect during the intersection turning movement count. The closure was needed to repair the Cedar Lane Bridge, which is located on Cedar Lane Road south of SR 896 and increased traffic traveling through the intersection of US 301 and Armstrong Corner Road / Marl Pit Road.
- US 301 at SR 71: The intersection operated at LOS C during the AM peak hour and LOS D during the PM peak hour for 2010 and 2011. No significant changes were observed.
- US 301 at SR 299: The intersection operated at LOS D during both the AM and the PM peak hours for 2010 and 2011 with no significant changes observed.

Table 3:
Peak Hour LOS at Selected Signalized Intersections along US 301

Site	2010		2011		2012		2013		2014		2015		2016	
	AM	PM												
US 301 at Old Summit Bridge Rd	A	A	A	A										
US 301 at SR 896	C	C	C	C										
US 301 at Armstrong Corner Rd	C	C	D	D										
Existing US 301 at SR 71	C	D	C	D										
Existing US 301 at SR 299	D	D	D	D										

US 301 SPUR ROAD
APRIL 2012
2011 MONITORING REPORT

Figure 12: Total Delay and Corresponding Level of Service (LOS) at Select Signalized Intersections along US 301 during the AM Peak Hour

Figure 13: Total Delay and Corresponding Level of Service (LOS) at Select Signalized Intersections along US 301 during the PM Peak Hour

Unsignalized Intersections

Delay studies were performed at the following three (3) unsignalized intersections along the existing US 301 and Choptank Road corridor:

- US 301 at Old School House Road
- US 301 at Keenan Auto Body
- Choptank Road at Clayton Manor Drive

The locations were selected to represent the typical operation of unsignalized access points along the US 301 and Choptank Road corridors, both of which are likely to be impacted by construction of the Spur Road. Similar to the signalized intersections, the operational performance of unsignalized intersections is presented in terms of average delay per vehicle and a corresponding Level of Service (LOS). For unsignalized intersections, the Level of Service thresholds are somewhat lower than the thresholds for signalized intersections, with LOS F representing conditions where vehicles experience 50 or more seconds of delay.

The number of vehicles stopping at the stop sign and the length of each stop was recorded at each of the three study intersections during the PM peak hour. The PM peak hour was selected since it represents the period that vehicles typically experience the highest level of delay making turns from minor street approaches onto US 301 and Choptank Road. The average delay per stopped vehicle was determined for each location (see Figure 14). In 2011, the average control delay was 38 seconds per vehicle (LOS D) at the intersection of US 301 and Old School House Road, 58 seconds per vehicle (LOS F) at the intersection of US 301 at Keenan Auto Body and 18 seconds per vehicle (LOS B) at the intersection of Choptank Road and Clayton Manor Drive. A comparison of the 2010 and 2011 studies is shown in Figure 14.

There was relatively minimal change in delay at the intersection of US 301 and Old School House Road; however, delay increased substantially (by 21 seconds per vehicle) to nearly a minute of delay per vehicle at the intersection of US 301 and Keenan Auto Body. This increase in delay may be attributable to the temporary Cedar Lane Road closure. Delay increased moderately at the intersection of Choptank Road and Clayton Manor Drive (by 8 seconds per vehicle); however, the average delay per vehicle remains fairly low at 18 seconds per vehicle.

Figure 14: Total Delay and Corresponding Level of Service (LOS) at Select Unsignalized Intersections along US 301 during the PM Peak Hour

Highway Safety

The goal of this annual monitoring report with respect to safety is to monitor the number of crashes occurring on local roads throughout the US 301 Project Area. The number of crashes will be documented each year to determine if any road segments experience a significant increase in crashes.

The number of reported crashes occurring on each key road segment in 2011 is shown in Table 4 and on Figure 15. Crash data for prior years, while available, was not included in this summary for two reasons: First, there was a considerable amount of roadway construction activity ongoing during 2007 and 2008 throughout the project area that would likely skew the crash data for those years, including long-term lane reductions and temporary closures of US 301, construction along Choptank Road, etc. Second, data will be collected each year for several years into the future, providing a basis for comparison of several year's worth of crash data, including the identification of crash trends over time.

Average Accident Rates have been calculated for each road segment to provide a relative measure of comparison of each roadway segment, factoring in traffic volumes, with other similar roads throughout Delaware and New Castle County (see Table 4). The calculated Average Accident Rates were compared to the Statewide and New Castle County crash rates for similar roadway segments of the same functional classifications. It should be noted that DeIDOT was not able to provide 2011 Statewide and New Castle County crash rates; therefore, those columns were left blank. They will be updated in future reports when the data becomes available. In general, the

US 301 SPUR ROAD
APRIL 2012 2011 MONITORING REPORT
number of crashes has decreased between 2010 and 2011 at most of the locations being monitored. The exceptions were the curve between Summit Bridge and Bethel Church Road, where the number of crashes increased from 2 to 5, Bunker Hill Road between Choptank Road and US 301, where the number of crashes increased from 5 to 7, and SR 1 between Roth Bridge and US 13 / SR 1 Split (Tybouts Corner), where the number of crashes increased from 53 to 69.

Additional detail for these crashes, including the specific location, type and severity of each crash are summarized in Appendix C.

US 301 Spur Road															pril 2	012
			Acc ents	ident Milli	Tab Rate on V	4: for ehic	Road le Miles	$\begin{aligned} & \text { d Typ } \\ & \text { les } \mathrm{Tr} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ee (A } \\ & \text { irae } \end{aligned}$	$\begin{aligned} & \text { (RT) } \\ & \text { d) } \end{aligned}$						
Site			10			201				20					13	
US 301 between Summit Bridge and SR 896 (Boyds Corner Rd)	32	1.44	0.60	0.41	21	0.93										
The "curve" between Summit Bridge and Bethel Church Rd	2				5											
The intersection of US 301 and Bethel Church Rd	3				3											
US 301 between SR 896 and Peterson Rd	50	1.78	1.14	1.17	27	0.94										
US 301 between Peterson Rd and Levels Rd	22	3.06	2.37	2.54	16	2.18										
US 301 between Levels Rd and DE / MD State Line	19	1.42	1.14	1.17	13	0.95										
Bethel Church Rd between US 301and Choptank Rd	6	6.05	1.58	2.37	2	1.30										
Choptank Rd between Bethel Church Rd and Bunker Hill Rd	8	3.32	1.58	2.37	5	0.86										
Bunker Hill Rd between Choptank Rd and US 301	5	8.83	1.58	2.37	7	12.97										
SR 1 between Roth Bridge and US 13 / SR 1 Split (Tybouts Corner)	53	0.41	0.90	0.90	69	0.52										

US 301 SPUR ROAD

Figure 15: Comparison of Crashes for Select Roadways in the US 301 Corridor

US 301 SPUR ROAD
APRIL 2012

Hazard Elimination Program

Roadway segments in the project area that are reported within DeIDOT's Hazard Elimination Program (HEP) and High Risk Rural Roads Program (HRRRP) will be identified each year during the construction of US 301. These programs seek improvements focused on reducing the number of crashes at each location. A list of the HEP and HRRRP locations between 2007 and 2011 can be found in Tables 5 and 6.

US 301 Spur Road 2011 Monitoring Report		le 5: Locations - From	April 2012 to 2011
Site	Start Milepost	End Milepost	Year Studied
US 13	0.19 miles South of Greylag Road	0.24 miles North of Boyds Corner Road	2006
US 301/SR 896 Summit Bridge Rd	0.44 miles North of Beaston Rd	0.56 miles South of Bethel Church Rd	2007
SR 299/Main Street	0.25 miles West of Brick Mill Road	0.24 miles East of Brick Mill Road	2007
SR 299/Main Street	0.35 miles East of Brick Mill Road	0.23 miles West of Brick Mill Road	2009
SR 1	1.36 miles South of SR 299	0.97 miles south of SR 299	2009
SR 299/Main Street	US 301	0.11 miles East of Silver Lake Road	2010
US 301/SR 896 Summit Bridge Rd	0.21 miles North of Springmill Drive	0.25 miles Norh of Marl Pit Road	2011

| US 301 Spur Road
 2011 Monitoring Report Table 6: | April 2012 |
| :---: | :---: | :---: | :---: |
| High Risk Rural Roads Program Locations - from 2007 to 2011 | |

List of 2012 Hazard Elimination Program sites was also obtained from DeIDOT. The list showed the following two potential locations in the project area in the 2012 program:

- US 301 - between SR 896 (Boyds Corner Road) and 0.29 mile north of SR 896
- SR 299 - between 0.1 mile west of Corbit Alley and Fifth Stree-t (northbound US 13)

It should be noted that the 2012 Hazard Elimination Program sites have not been finalized and the above listed sites may be removed in future revisions.

US 301 SPUR ROAD

Incident Management

One of the regional benefits identified with the Spur Road is that it will provide an alternative north-south route for traffic should there be an incident that occurs on the following road segments:

- Existing US 301 between SR 299 and Bethel Church Road
- SR 896 (Boyds Corner Road) between US 301 and US 13
- Bethel Church Road between US 301 and Choptank Road
- SR 1 between Roth Bridge and I-95

For this monitoring program, DeIDOT will track the number of significant incidents that occur each year on these roads which result in detours that could have been accommodated more safely and efficiently on the Spur Road rather than on the local road network. Since 2004, there have been 56 incidents, including 10 in 2011, that have resulted in 170 or more hours of detours that could have utilized the Spur Road as an alternate detour route, thereby reducing impacts to the local roadway network. Additional detail for each significant incident that has occurred since 2004 are summarized in Appendix D.

Construction Projects

DeIDOT and the Town of Middletown will likely have several other active maintenance and construction projects occurring at various times during the duration of the US 301 Spur Monitoring Program that could affect the traffic data being collected. DeIDOT identified three (3) active construction projects in the US 301 project area in 2011, as shown in Table 7. As part of the program, DeIDOT will continue to monitor all active roadway construction projects in the US 301 project area from south of Middletown to approximately the Chesapeake and Delaware Canal.

2011 Monitoring Report
Table 7:
Construction Activity in the US 301 Project Area

Contract Number	Project Title	Start/End	Project Description
T200712003	Jamisons Corner Road, SR 896 (Boyds Corner Road) to Hyetts Corner Road	$11-14-2011$ $/$ TBD	Reconstruct Jamisons Corner Road to improve to current standards
T201007101	Cedar Lane Bridge Construction	September 2011 / December 2011	Bridge construction / repair requiring Cedar Lane Road closure
-	Summit Bridge Construction	$4-26-2011$ / TBD	Bridge repair work requiring daytime intermittent lane closures.

Appendix A

Proposed Development for Southern New Castle County

	Status			Non Residential		UNBULTT_H	VBULTT_HH	UNITS_BUILT	UNBUILT_HH	UNITS_BUILT 2011	\% Complete	
SPRING ARBOR AT South Ridge	Approved	190	521	,		416	195	326	188	333	64\%	New Castle
THE PARKWAY AT SOUTH RIDGE	Approved	190	446	0		0	208	238	206	240	54\%	New Castle
Kohl Properties	Approved	190	0	0	Future Target, other Retail	0	0	0		0	N/A	New Castle
Merrimack Commons	Approved	190	78	0	55+ Community	0	2	76	2	76	97\%	New Castle
PARKSIDE	Approved	191	492	0		333	326	166	316	176	36\%	New Castle
SHANNON COVE	Approved	192	409	0	FORMERLY CROMWELL	343	311	99	301	108	26\%	New Castle
CARTER FARM	Pending	193	578	0	S ZONING	578	578	O	578	0	0\%	New Castle
BIGGS FARM	Approved	193	20	0	OPEN SPACE OPTION 1	20	20	0	20	0	0\%	New Castle
VILLAGE OF SCOTT RUN	Pending	194	271	0	AGE RESTRICTED COMMUNITY/In path of US 301	271	271	0	271	0	0\%	New Castle
CANALVIEW AT CROSSLAND (South)	Approved	194	432	0	RZ TO ST, RESUB CROSSLAND	405	401	31	346	86	20\%	New Castle
WILLOW GROVE MILL Phase II	Approved	197	192	58,700	Shopping Center	120	87	105	74	118	61\%	New Castle
The Highlands	Approved	210	1250	0		1250	1250	0	1250	0	0\%	New Castle
Westown Commercial	Approved	212	0	0	0	0	0	0	0	0	N/A	New Castle
Middletown Auto Mall	Approved	212	0	0	0	0	0	0	0	0	N/A	New Castle
ESTATES AT RIDGEFIELD	Expired	213	16	0	CONSERVATION DESIGN OPT	16	16	0	16	0	0\%	New Castle
The Highlands @ Backcreek	Approved	213	42	0	CONSERVATION OPT 1	42	42	0	42	0	0\%	New Castle
WOODGRIFF FARMS	Expired	214	4	0		4	4	0	0	4	100\%	New Castle
449 ARMSTRONG CORNER	Expired	214	0	24,000	0	0	0	0	0	0	N/A	New Castle
CEDAR LANE	Approved	216	78	0		77	77	1	77	1	1\%	New Castle
PLEASANTON	Expired	216	434	0	OPEN SPACE PLANNED OPTION	434	434	0	434	0	0\%	New Castle
Whitehall Phase 1	Pending	218	499	79,300	Street grid to be built	0	0	0	499	0	0\%	New Castle
Promedade at Middletown	Approved	266	273	145,000	273 Condos plus retai/ movie theatre	273	273	0	273	0	0\%	New Castle
Poole Property	Exploratory	267	385	420,000	240: Office, 90K Retail, 90K Warehouse	385	385	0	385	0	0\%	New Castle
BOHEMIA MILL POND	Approved	268	50	0		22	22	28	22	28	56\%	New Castle
COUNTRY ACRES II	Approved	268	6	0		6	6	0	6	0	0\%	New Castle
BAYBERRY SOUTH	Approved	274	1190	0		1186	1186	4	1186	0	0\%	New Castle
Boyd's Corner Farm	Pending	274	116	146,800	Mixed use, apts. and townhomes	287	287		287	0	0\%	New Castle
COUNTRY CLUB ESTS	Expired	277	407	0	OPEN SPACE OPTION	407	407	0	407	0	0\%	New Castle
WINCHELSEA	Pending	279	513	0	REZONED ST, S Mix of Detached, attached, TH and Apt; Open Space Plar	513	513	0	513	0	0\%	New Castle
ASBURY CHASE II	Approved	279	47	0	ALSO 1301320179	16	9	31		47	100\%	New Castle
BAYBERRY TOWN CENTER	Pending	279	0	559,204	PART REZONED FROM 5 TO CR	0	0	0	0	0	N/A	New Castle
HYETTS CORNER	Approved	280	143	0		136	109	34	103	40	28\%	New Castle
Windsor Commons at Hyetts Corner	Approved	280	316	0		149	149	0	0	0	0\%	New Castle
BAYBERRY NORTH	Approved	280	951	0	OSP, TDR	951	951	0	938	13	1\%	New Castle
LOREWOOD ESTATES	Approved	281	10	0		5	4	6	4	6	60\%	New Castle
Whitehall Phase 1	Pending	281	358	79,300	Mixed HH's 48\% Retail/Off, 840 pupil school	0	358	0	358	0	0\%	New Castle
TOWNSEND VILLAGE	Approved	289	242	0		158	147	95	143	99	41\%	New Castle
Isaacs Subdivision	Exploratory	289	87	0	Exploratory	87	87	0	87	0	0\%	New Castle
Westown (Levels)	Approved	291	1800	0		1800	1800	0	1800	0	0\%	New Castle
ESTATES AT ST ANNES	Approved	292	466	0		326	302	164	291	175	38\%	New Castle
Gateway/Christiana Care	Pending	294	0	64,000	Hospital Site	0	0	0	0	0	N/A	New Castle
TOWNSEND VILLAGE	Approved	300	336	0		166	162	174	154	182	54\%	New Castle
Townsend Acres	Approved	300	49	0		49	49	0	49	0	0\%	New Castle
Gander Hill	Approved	301	80	0	0	80	48	32	47	33	41\%	New Castle
Middletown Bus. Park	Approved	308	0	0	0	0	0	0	0	0	N/A	New Castle
DEATS FARM	Pending	309	1381	867,000	Mixed-Use; 267 K Comm, 600 K Office	1381	1381	0	1381	0	0\%	New Castle
SUMMIT CROSSING PH 2	Approved	310	0	5,500	REZONING APPROVED	0	0	0	0	0	N/A	New Castle
ROTHWELL VILLAGE	Approved	310	150	0	OPSP OPTION 2	150	150	0	150	0	0\%	New Castle
CHURCHTOWN MANOR	Pending	312	273	0	WF housing Detached, attached and TH	273	273	0	273	0	0\%	New Castle
TSAGANOS	Approved	313	0	16,960	REZONING TO CN	0	0	0	0	0	N/A	New Castle
Whitehall Phase 1	Pending	314	141	79,300	Mixed HHs - Retail (15K S.F.)	0	141	0	141	0	0\%	New Castle
SCOTT RUN BUSINESS PK	Approved	335	0	1,700,000		0	0		0	0	N/A	New Castle
OASIS AT CYPRESS RIDGE	Expired	337	29	0	0	29	29	0	29	0	0\%	New Castle
Browning Creek	UNKNOWN	960	47	0.00		47	47	0	47	0	0\%	Cecil
John Harrison	UNKNOWN	960	2	0.00		2	2	0	2	0	0\%	Cecil
John Curtis	UNKNOWN	960	3	0.00		3	3	0	3	0	0\%	Cecil
Edgardo Nieves	UNKNOWN	960	41	0.00		41	41	0	41	0	0\%	Cecil
Blossom View	UNKNOWN	960	28	0.00		28	28	0	28		0\%	Cecil
Fulton Hills	UNKNOWN	960	17	0.00		17	17	0	17	0	0\%	Cecil
Horse Trails at Worsell Manor	UNKNOWN	960	27	0.00		27	27	0	27	0	0\%	Cecil
Sycamore Lane Nursery	UNKNOWN	960	90	0.00		90	90	0	90		0\%	Cecil
Frisby Meadows	UNKNOWN	960	79	0.00		79	79	0	79		0\%	Cecil
Glenn Maple	UNKNOWN	970	7	0.00		7	7	0	7	0	0\%	Cecil
Butlers Crossing	UNKNOWN	970	18	0.00		18	18	0	18	0	0\%	Cecil
Spirit Airpark	UNKNOWN	970	5	0.00		5	5	0	5	0	0\%	Cecil

Other Development In SNCC outside of the 301 Spur study area

Plan Name	Status	TAZ	Proposed Units	Non Residential Sq. Ft.	Comments	UNBULTT_HH 2009	UNBUILT_HH 2010	UNITS_BUIT 2010	UNBUILT_HH	UNITS -BUILT $_{\text {2011 }}$	\% Complete (Residential)	County
WARREN TRACT	Pending	195	126	0	OPEN SPACE OPTION	126	126	0	126	0	0\%	New Castle
ROBERTS FARM	Pending	199	205	0		205	205	0	205	0	0\%	New Castle
EAGLES NEST (EAST)	Expired	200	14	0	OPEN SPACE SUBDIVIIION	14	14	0	14	0	0\%	New Castle
SILVER MAPLE FARM	Pending	271	300	0	Increase from 204 to 300; Age-Rest housing; Open space Planned	300	300	0	30	0	0\%	New Castle
PONDS AT ODESSA	Pending	272	280	0	OPEN SPACE PLANNED DEV	280	278	2	278	2	1\%	New Castle
TIDES AT SILVER RUN	Expired	272	241	0	OPSP	241	241	0	241	0	0\%	New Castle
AUGUSTINE CREEK, PHASE II	Approved	275	177	0		56	39	138	28	149	84\%	New Castle
ASHBY'S PLACE	Pending	275	54	0	OPSP OPTION 2	54	54	0	54	0	0\%	New Castle
HUBERS CROSSING	Pending	275	0	119,385	CR Zoning	0	0	0	0	0	N/A	New Castle
PENFIELD/LESTER PROPERTY	Expired	278	140	0		140	140	0	140	0	0\%	New Castle
LIGHTHOUSE FARM	Pending	283	54	0	SZONING	54	54	0	54	0	0\%	New Castle
PORT PENN ASSEMBLAGE	Pending	284	505	0	OPSP OPTION	505	505	0	505	0	0\%	New Castle
PRESERVE	Expired	284	264	0	SF DETACHED \& TOWNHOMES	264	264	0	264	0	0\%	New Castle
AUGUSTINE PRESERVE	Expired	288	72	0	PRE-X	72	72	0	72	0	0\%	New Castle
Odessa Commons	Exploratory	296	240	0	Exploratory	240	240	0	240	0	0\%	New Castle
ENCLAVE AT ODESSA	Approved	302	205	0		145	127	78	109	96	47\%	New Castle
ROBINSON FARMS	Pending	302	476	0	Workforce Housing	476	476	0	476	0	0\%	New Castle
ODESSA NATIONAL	Approved	302	761	0		104	280	479	278	481	63\%	New Castle
FAIRWAYS AT ODESSA NAT'L	Approved	303	70	0		58	62	8	53	17	24\%	New Castle
GOLDSBOROUGH FARM	Approved	303	144	0		144	79	65	144	0	0\%	New Castle
SMITH FARM	EXPIRED	303	328	0	PRE-X	328	328	0	328	0	0\%	New Castle
Appoquinimink School Dist	Approved	304	0	459,323	4 School Complex; ELC and Aquatic Cntr.	0	0	0	0	0	N/A	New Castle
BAYMONT FARMS	Approved	321	157	0	OPEN SPACE OPTION 1	157	157	0	156	1	1\%	New Castle
SUGAR LOAF FARMS	Approved	321	28	0	RESUBDIVIIION OF OLD PLA	7	7	21	7	21	75\%	New Castle
HIGH HOOK FARMS	Pending	321	390	0		390	390	0	390	0	0\%	New Castle
CLAYBOURNE	Approved	322	25	0		13	13	12	12	13	52\%	New Castle
SPRING OAKS	Pending	336	247	0	Townhouses	247	247	0	247	0	0\%	New Castle
BROOKMILL ESTATES	Approved	339	7	0		7	7	0	7	0	0\%	New Castle
EAGLES NEST WEST	Expired	339	25	0		25	25	0	25	0	0\%	New Castle
CRANBERRY COVE	Withdrawn	339	15	0	SR ZONING	15	15	0	15	0	0\%	New Castle
TOWNSEND MINI-STORAGE	Approved	339	0	50,855		0	0	0	0	0	N/A	New Castle
Watson Subdivision	Pending	339	800	0		800	800	0	800	0	0\%	New Castle
KRM Investments	Pending	339	200	0		200	200	0	200	0	0\%	New Castle
Sharoff Property	Approved	339	254	0		254	254	0	254	0	0\%	New Castle

Appendix B

Residential Construction in the Town of Middletown
US 301 Spur Road
2010 Monitoring and Triggering Report

April 2012

Apartment Complex Construction in the Town of Middletown

Site		2011		2011		2012		2013		2014		2015					
				2016													
		$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\prime}} \\ & \overline{\mathrm{m}} \end{aligned}$					$\begin{aligned} & \text { 言 } \\ & \text { cic } \end{aligned}$	䓂	$\begin{aligned} & \text { 言 } \\ & \frac{0}{5} \end{aligned}$	$\begin{aligned} & \text { 芌 } \\ & \bar{\sim} \end{aligned}$	$\begin{aligned} & \text { 言 } \\ & \text { ⿳亠二口斤彡 } \end{aligned}$	$\begin{aligned} & \frac{\square}{\bar{\prime}} \\ & \bar{\sim} \end{aligned}$	$\begin{aligned} & \text { 言 } \\ & \text { ⿳亠二口斤彡 } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\prime}} \\ & \stackrel{y}{m} \end{aligned}$	$\begin{aligned} & \text { 言 } \\ & \text { ⿳亠二口斤彡 } \end{aligned}$		\＃ \＃ ¢
Highlands	336	0	336	0	336												
Middletown Village	300	300	0	300	0												
Parkway at South Ridge	204	0	204	0	204												
Promenade／ Middletown Condos	273	0	273	0	273												
Westown（Levels）	108	0	108	0	108												
Total	1，221	300	921	300	921												

US 301 Spur Road
April 2012
2010 Monitoring and Triggering Report

Appendix B：

Duplex construction in the Town of Middletown

Site	$\begin{aligned} & \text { D} \\ & 0 \\ & 0 \\ & 0 . \\ & 0.0 \end{aligned}$	2010		2011		2012		2013		2014		2015		2016	
		$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\prime}} \\ & \overline{\mathrm{m}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\jmath}} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\begin{aligned} & \stackrel{H}{\bar{亏}} \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \text { 言 } \\ & \stackrel{c}{5} \end{aligned}$	$\begin{aligned} & \stackrel{H}{\bar{亏}} \\ & \overline{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \text { 言 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\omega}} \\ & \bar{\sim} \end{aligned}$	$\begin{aligned} & \text { 言 } \\ & \text { c } \end{aligned}$	言 $\stackrel{y}{\bar{m}}$	言 气 5		$\begin{aligned} & \text { 言 } \\ & \\ & \hline 15 \end{aligned}$		\＃ \＃ S
Highlands	206	0	206	0	206										
Spring Arbor at South Ridge	12	8	4	8	4										
Parkway at South Ridge	16	0	16	0	16										
Westown（Levels）	260	0	260	0	260										
Total	494	8	486	8	486										

US 301 Spur Road 2010 Monitoring	T	gger ownh			Ap	$\begin{aligned} & \text { pens } \\ & \text { on i } \end{aligned}$	$\begin{aligned} & \text { ix B } \\ & \text { the } \end{aligned}$							pri	012
		20	10		11										
Site	（1）	$\begin{aligned} & \underline{\#} \\ & \stackrel{\rightharpoonup}{\overline{0}} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\omega}} \\ & \bar{\sim} \end{aligned}$		$\begin{aligned} & \text { 䓂 } \end{aligned}$	$\stackrel{\rightharpoonup}{7}$ $\stackrel{0}{c}$ 5	$\begin{aligned} & \text { 䓂 } \end{aligned}$	言 ⿳亠二口斤口 5	$\begin{aligned} & \text { 言 } \\ & \bar{\sim} \end{aligned}$	言 ⿳亠二口斤口 5	$\begin{aligned} & \text { 䓂 } \end{aligned}$	言 득	$\frac{\stackrel{\rightharpoonup}{\bar{\omega}}}{\stackrel{1}{n}}$	\＃ O ¢
Highlands	700	0	700	0	700										
Spring Arbor at South Ridge	123	48	75	55	68										
Parkway at South Ridge	226	33	193	39	187										
Westown（Levels）	403	0	403	0	403										
Willow Grove Mill	202	202	0	202	0										
Willow Grove Mill II	192	105	87	115	77										
Total	1，846	388	1，458	411	1，435										

US 301 Spur Road
2010 Monitoring and Triggering Report

April 2012 2010 Monitoring and Triggering Report

Appendix B：
Townhouse construction in the Town of Middletown

Site	2010			2011		2012		2013		2014		2015		2016	
	$\begin{aligned} & \text { O} \\ & \text { © } \\ & \text { O} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { 言 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \text { 莀 } \\ & \vec{\omega} \end{aligned}$	$\begin{aligned} & \text { 言 } \\ & \text { a } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \stackrel{\rightharpoonup}{\bar{\omega}} \end{array}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\prime}} \\ & \overline{\mathrm{m}} \end{aligned}$	$\begin{array}{\|l\|l} \hline \stackrel{\rightharpoonup}{\overline{⿳ ㇒}} \\ \text { ¢ } \\ \hline \end{array}$	$\stackrel{H}{\bar{亏}}$	$\begin{array}{\|l\|l} \hline \stackrel{\rightharpoonup}{\overline{⿳ ㇒}} \\ \stackrel{C}{5} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\prime}} \\ & \overline{\mathrm{m}} \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{\rightharpoonup}{\overline{⿳ ㇒}} \\ \stackrel{C}{5} \\ \hline \end{array}$	䓂	
Estate at St．Andrews	466	157	309	177	289										
Lakeside	185	184	1	184	1										
Legends	378	377	1	377	1										
Longmeadow	243	239	4	239	4										
Merrimac Commons	78	0	78	0	78										
Middletown Crossing	134	125	9	125	9										
Middletown Village	262	253	9	253	9										
Parkside	492	166	326	174	318										
Springmill	362	361	1	362	0										
Spring Arbor at South Ridge	182	55	127	59	123										
Westown（Levels）	1，000	0	1，000	0	1，000										
Willow Grove Mill	339	338	1	339	0										
Total	4，121	2，255	1，866	2，289	1，832										

Appendix C

US 301 Corridor Crash Reports

Summit Bridge and SR896

	Date	Time	Milepoint	Type	Severity	Direction
$\mathbf{1}$	$2 / 12 / 2011$	$16: 22$	3.78	Animal	Injury	SB
$\mathbf{2}$	$1 / 9 / 2011$	$14: 07$	2.69	Rear-end	PDO	SB/SB
$\mathbf{3}$	$9 / 3 / 2011$	$21: 14$	1.99	Debris in roadway	PDO	NB
$\mathbf{4}$	$3 / 26 / 2011$	$20: 37$	1.97	Rear-end	PDO	SB/SB
$\mathbf{5}$	$5 / 8 / 2011$	$19: 00$	2.71	Rear-end	Injury	SB/SB
$\mathbf{6}$	$2 / 18 / 2011$	$15: 26$	3.43	Rear-end	PDO	SB/SB
$\mathbf{7}$	$11 / 21 / 2011$	$21: 01$	0.3	Angle	PDO	SB/SB
$\mathbf{8}$	$9 / 9 / 2011$	$20: 43$	0.3	Left-turn	PDO	NB/SB
$\mathbf{9}$	$10 / 22 / 2011$	$15: 14$	1.44	Angle	PDO	NB
$\mathbf{1 0}$	$11 / 21 / 2011$	$22: 06$	2.55	ROR-HFO	PDO	EB/SB
$\mathbf{1 1}$	$4 / 2 / 2011$	$21: 17$	1.94	Sideswipe-same	PDO	SB
$\mathbf{1 2}$	$5 / 18 / 2011$	$21: 48$	2.12	Head-on	Injury	NB
$\mathbf{1 3}$	$6 / 25 / 2011$	$14: 58$	0.16	Sideswipe-same	PDO	SB
$\mathbf{1 4}$	$11 / 30 / 2011$	$17: 40$	2.71	Rear-end	PDO	SB/SB
$\mathbf{1 5}$	$3 / 5 / 2011$	$23: 33$	1.41	Sideswipe-same	PDO	NB/NB
$\mathbf{1 6}$	$11 / 7 / 2011$	$18: 50$	3.47	Objects in roadway	PDO	SB/SB/SB
$\mathbf{1 7}$	$4 / 22 / 2011$	$20: 03$	2.15	Rear-end	PDO	NB/NB/NB
$\mathbf{1 8}$	$12 / 13 / 2011$	$2: 12$	2.12	Rear-end	PDO	NB/NB/NB
$\mathbf{1 9}$	$11 / 11 / 2011$	$13: 00$	1.8	Sideswipe-same / Rear-end	Injury	SB/SB/SB
$\mathbf{2 0}$	$8 / 30 / 2011$	$16: 59$	0.69	Rear-end	Injury	NB/NB
$\mathbf{2 1}$	$4 / 22 / 2011$	$11: 42$	0.01	Rear-end	PDO	WBRT/WBRT
		$\mathbf{2 0 1 1}$ Total	Number of Crashes		$\mathbf{2 1}$	

HFO: Hit-fixed-object
ROR: Run-off the Road
PDO: Property Damage Only

US 301 between Summit Bridge and SR896

A total of twenty-one (21) crashes were reported in 2011, and the following trends were identified:

- Five (24 percent) of the twenty-one reported crashes resulted in personal injury.
- Sixteen (76 percent) of the twenty-one report crashes resulted in property damage only.
- Nine (43 percent) of the reported crashes were rear-end crashes.
- Four (19 percent) of the reported crashes were sideswipe-same direction crashes.
- Two (9 percent) of the reported crashed were angle crashes.
- Two (9 percent) of the reported crashes involved debris in the roadway and a motor vehicle.
- One (5 percent) of the reported crashes was a head-on crash.
- One (5 percent) of the reported crashes was a left-turn crash.
- One (5 percent) of the reported crashes was a run-off-the-road crash.
- One (5 percent) of the reported crashes involved an animal in the roadway and a motor vehicle.

SR896 and Peterson Road

	Date	Time	Milepoint	Type	Severity	Direction
1	5/8/2011	12:00	4.35	Angle	PDO	NBLT/NB
2	11/18/2011	14:20	3.56	Motorcycle	Injury	SB
3	6/27/2011	18:03	0	Angle	PDO	SB/EBLT
4	2/6/2011	17:00	3.96	ROR	PDO	NB
5	12/5/2011	17:30	3.87	ROR	PDO	SB/EBRT
6	3/17/2011	15:45	3.87	Angle	PDO	NB/EBLT
7	4/24/2011	21:07	3.68	Sideswipe-same	PDO	NB/NB
8	9/1/2011	17:47	2.8	Rear-end	Injury	SB/SB
9	10/13/2011	9:38	2.24	Rear-end	Injury	SB/SB
10	7/28/2011	8:30	3.85	ROR	PDO	SB
11	10/18/2011	16:21	2.33	Sideswipe-same	PDO	SB/SB
12	9/17/2011	15:46	2.07	Sideswipe-opposite	Injury	SB/SB/NB
13	9/18/2011	1:23	4.08	Sideswipe-same	PDO	SB/SB
14	9/18/2011	14:55	1.86	Rear-end	PDO	NB/NB
15	10/23/2011	12:02	3.02	Rear-end	Injury	NB/NB
16	9/18/2011	17:53	1.7	Rear-end	PDO	NB/NB
17	7/1/2011	4:30	1.74	ROR-HFO / Rollover	Injury	NB
18	5/26/2011	7:33	1.83	Rear-end	PDO	NB/NB
19	7/1/2011	7:13	1.77	Rear-end	PDO	NB/NB/NB
20	8/15/2011	14:32	2.14	Rear-end	PDO	NB/NB
21	3/4/2011	0:23	2.26	ROR-HFO	PDO	SB
22	11/8/2011	18:09	2.75	Rear-end	PDO	SB/SB
23	11/12/2011	13:47	2.21	Rear-end	PDO	SB/SB
24	5/6/2011	18:20	0.98	Rear-end	PDO	NB/NB
25	10/21/2011	18:35	1.11	Sideswipe-same	PDO	NB/NB
26	11/9/2011	17:55	1.34	Rear-end	Injury	SB/NBLT/NBLT/NB
27	5/3/2011	15:59	1.65	Rear-end	PDO	SB/SB
2011 Total Number of Crashes					27	

HFO: Hit-fixed-object

ROR: Run-off the Road

PDO: Property Damage Only

US 301 between SR896 and Peterson Road

A total of twenty-seven (27) crashes were reported in 2011, and the following trends were identified:

- Seven (26 percent) of the twenty-seven reported crashes resulted in personal injury.
- Twenty (74 percent) of the twenty-seven reported crashes resulted in property damage only.
- Thirteen (48 percent) of the reported crashes were rear-end crashes. Three (3) of the crashes occurred on US 301 near the Old School House Road intersection. Five (5) of the crashes occurred on US 301 near the Springmill Drive intersection. Two (2) of the crashes occurred on US 301 near the Marl Pit Road intersection. One (1) crash occurred on US 301 at the SR71 intersection.
- Five (18 percent) of the reported crashes were runoff-the-road crashes. Two (2) of the crashes occurred on northbound US301 and three (3) crashes occurred on southbound US 301.
- Four (15 percent) of the reported crashes were sideswipe-same direction crashes. One (1) of the crashes occurred on US 301 near the Boyds Corner Road intersection and one (1) of the crashes occurred on US 301near the SR 299 intersection. One (1) of the crashes occurred US 301 near the Marl Pit Road intersection and one (1) of the crashes occurred on US 301 near the Peterson Road intersection.
- Three (11 percent) of the reported crashes were angle crashes. Two (2) of the crashes occurred at the Ash Boulevard intersection and one (1) crash occurred at the Broad Street intersection.
- One (4 percent) of the reported crashes was a sideswipe-opposite direction crash. The crash occurred on southbound US 301 near the Marl Pit Road intersection.
- One (4 percent) of the reported crashes involved a motorcycle. The crash occurred on southbound US 301 near the Peterson Road intersection.

Peterson Road and Levels Road

	Date	Time	Milepoint	Type	Severity	Direction
1	5/9/2011	14:19	2.74	Rear-end	PDO	SB/SB
2	10/7/2011	16:32	2.88	Angle	Injury	EBLT/SB
3	5/21/2011	21:43	2.88	Angle	Injury	WBLT/EB
4	5/21/2011	23:30	2.98	Head-on / DUI	Injury	NB/SB
5	10/30/2011	13:23	3.14	Rear-end	PDO	SB/SB
6	5/26/2011	16:00	0	Rear-end	Injury	NB/NB
7	6/8/2011	15:36	2.38	Sideswipe-same	PDO	NB/NB
8	11/20/2011	3:05	2.37	Rear-end	Injury	NB/NB
9	7/9/2011	7:09	0.48	Angle	Injury	WBLT/NB
10	3/30/2011	21:45	2.38	Rear-end	Injury	SB/SB/SB
11	12/15/2011	21:37	2.88	Sideswipe-same	Injury	SB/SB
12	7/30/2011	21:15	2.89	Sideswipe-same	PDO	SB/SB
13	8/26/2011	7:04	0.73	ROR-HFO / DUI	PDO	SB
14	8/30/2011	10:40	2.38	Rear-end	Injury	NB/NB
15	9/1/2011	21:15	3.1	Pedestrian	Fatality	NB
16	7/5/2011	16:00	2.88	Rear-end	PDO	NB/NB
2010 Total Number of Crashes					16	

HFO: Hit-fixed-object
ROR: Run-off the Road

US 301 between Peterson Road and Levels Road

A total of sixteen (16) crashes were reported in 2011, and the following trends were identified:

- One (6 percent) of the reported sixteen crashes resulted in a fatality. The fatality involved a pedestrian.
- Nine (56 percent) of the reported sixteen crashes resulted in personal injury.
- Six (38 percent) of the reported crashes resulted in property damage only.
- Two (2) of the reported crashes involved alcohol and resulted in DUI's.
- Seven (44 percent) of the reported crashes were rear-end crashes.
- Three (19 percent) of the reported crashes were angle crashes. All (3) of the crashes occurred on US 301 at the Diamond State Boulevard Intersection.
- Three (19 percent) of the reported crashes were sideswipe-same direction crashes. One (1) of the crashes occurred on northbound US 301 near the Merrimac Avenue Intersection and two (2) of the crashes occurred on southbound US 301 near the Diamond State Boulevard Intersection.
- One (6 percent) of the reported crashes involved a pedestrian. The crash resulted in a fatality and occurred on northbound US 301 near the Bunker Hill Road intersection.
- One (6 percent) of the reported crashes was a head-on crash. The crash involved a DUI and occurred on US 301 near Diamond State Boulevard.
- One (6 percent) of the reported crashes was a runoff-the-road crash. The crash involved a DUI and occurred on southbound US 301.

Levels Road and DE / MD State Line

	Date	Time	Milepoint	Type	Severity	Direction
$\mathbf{1}$	$5 / 28 / 2011$	$22: 47$	0.25	Rear-end / DUI	Injury	SB/SB
$\mathbf{2}$	$7 / 2 / 2011$	$1: 50$	1.01	Angle	PDO	NB/SB
$\mathbf{3}$	$1 / 10 / 2011$	$17: 58$	1.45	Rear-end	Injury	SB/SB/SB
$\mathbf{4}$	$5 / 3 / 2011$	$11: 33$	0.52	Angle	PDO	SB/WB
$\mathbf{5}$	$3 / 5 / 2011$	$19: 39$	0.56	Animal	PDO	NB
$\mathbf{6}$	$4 / 7 / 2011$	$13: 11$	0.52	Angle	Injury	SB/EBLT
$\mathbf{7}$	$7 / 15 / 2011$	$12: 21$	1.22	Rear-end	Injury	SB/NBLT/NB
$\mathbf{8}$	$11 / 11 / 2011$	$6: 22$	1.22	Rear-end	Injury	NB/NB
$\mathbf{9}$	$7 / 6 / 2011$	$18: 56$	2.01	Angle	Injury	SB/EBLT
$\mathbf{1 0}$	$12 / 19 / 2011$	$18: 33$	2.01	Debris in roadway	PDO	NB
$\mathbf{1 1}$	$8 / 7 / 2011$	$17: 17$		ROR-HFO	PDO	SB
$\mathbf{1 2}$	$2 / 27 / 2011$	$13: 20$	1.97	ROR-HFO	PDO	SB
$\mathbf{1 3}$	$8 / 19 / 2011$	$17: 35$	1.25	Rear-end	PDO	NB/NB

HFO: Hit-fixed-object
ROR: Run-off the Road
PDO: Property Damage Only

US 301 between Levels Road and DE / MD State Line

A total of thirteen (13) crashes were reported in 2011, and the following trends were identified:

- Six (46 percent) of the thirteen reported crashes resulted in personal injury.
- Seven (54 percent) of the thirteen reported crashes resulted in property damage only.
- Five (38 percent) of the reported crashes were rear-end crashes. All of the crashes occurred at or near the Middle Neck Road intersection.
- Four (31 percent) of the reported crashes were angle crashes. One (1) of the crashes occurred at the Strawberry Lane intersection and one (1) crash occurred at the SR299 intersection. One (1) crash occurred at the Hoober Inc. access and one (1) crash occurred at the truck stop access.
- Two (15 percent) of the reported crashes were runoff-the-road type crashes. Both of the crashes involved a motor vehicle on southbound US 301.
- One (8 percent) crash involved a deer and a motor vehicle.
- One (8 percent) of the reported crashes involved debris in the roadway and a motor vehicle.

US301 and Choptank Road

	Date	Time	Milepoint	Type	Severity	Direction
$\mathbf{1}$	$1 / 13 / 2011$	$9: 59$	2.11	ROR-HFO	PDO	NB
$\mathbf{2}$	$4 / 22 / 2011$	$19: 22$	2.13	ROR-HFO	PDO	NB
2011 Total Number of Crashes						

HFO: Hit-fixed-object
ROR: Run-off the Road
PDO: Property Damage Only

Bethel Church Road between US 301 and Choptank Road

A total of two (2) crashes were reported in 2011, and the following trends were identified:

- All of the reported crashes resulted in property damage only.
- All of the reported crashes were runoff-the-road (ROR) type crashes. Both of the ROR crashes involved northbound vehicles.

Bethel Church Road and Bunker Hill Road

	Date	Time	Milepoint	Type	Severity	Direction
$\mathbf{1}$	$4 / 7 / 2011$	$8: 39$	3.47	Angle	PDO	SB/EB
$\mathbf{2}$	$6 / 21 / 2011$	$3: 32$	1.48	ROR-HFO	Fatality	NB
$\mathbf{3}$	$4 / 22 / 2011$	$16: 26$	1.68	Angle	PDO	SB/EB
$\mathbf{4}$	$10 / 13 / 2011$	$18: 12$	0.07	ROR-HFO	PDO	SB
$\mathbf{5}$	$12 / 13 / 2011$	$7: 24$	0.71	ROR-HFO	Injury	SB
$\mathbf{2 0 1 1}$ Total Number of Crashes						

HFO: Hit-fixed-object
ROR: Run-off the Road

PDO: Property Damage Only

Choptank Rd between Bethel Church Road and Bunker Hill Road

A total of five (5) crashes were reported in 2011, and the following trends were identified:

- One (20 percent) of the five reported crashes resulted in a fatality. The crash was a runoff-theroad type crash. The crash occurred on northbound Choptank Road approaching the Bohemia Mill Road intersection.
- One (20 percent) of the five reported crashes resulted in personal injury.
- Three (60 percent) of the reported crashes resulted in property damage only.
- Three (60 percent) of the reported crashes were runoff-the-road (ROR) type crashes. One (1) crash involved a northbound vehicle and two (2) crashes involved southbound vehicles.
- Two (40 percent) of the reported crashes were angle crashes. Both (2) of the crashes occurred on Choptank Road at the Churchtown Road intersection.

Bunker Hill Road between
Choptank Road and US301

	Date	Time	Milepoint	Type	Severity	Direction
$\mathbf{1}$	$3 / 21 / 2011$	$7: 20$	1.75	ROR-HFO	PDO	WB
$\mathbf{2}$	$10 / 14 / 2011$	$7: 38$	1.77	Rear-end	Injury	
$\mathbf{3}$	$6 / 8 / 2011$	$9: 10$	2.68	ROR-HFO	PDO	EB
$\mathbf{4}$	$1 / 3 / 2011$	$8: 04$	2.17	Rear-end	Inury	EB/EB/EB
$\mathbf{5}$	$9 / 18 / 2011$	$14: 24$	0	Angle	Injury	SB/NBLT
$\mathbf{6}$	$1 / 14 / 2011$	$12: 08$	2.54	Angle	PDO	WB/SB
$\mathbf{7}$	$2 / 3 / 2011$	$12: 18$	2.54	Angle	PDO	EB/SB
$\mathbf{2 0 1 1 ~ T o t a l ~ N u m b e r ~ o f ~ C r a s h e s ~}$						

HFO: Hit-fixed-object
ROR: Run-off the Road
PDO: Property Damage Only

Bunker Hill Road between Choptank Road and US 301

A total of Seven (7) crashes were reported in 2011, and the following trends were identified:

- Three (42 percent) of the five reported crashes resulted in personal injury.
- Four (58 percent) of the five reported crashes resulted in property damage only
- Three (42 percent) of the reported crashes were angle crashes. All (3) of the crashes occurred at the Sand Hill intersection.
- Two (29 percent) of the reported crashes were rear-end crashes. One (1) of the crashes occurred on Bunker Hill Road at the entrance to Appoquinimink High School and the other crash (1) occurred on Bunker Hill Road near Merrimac Avenue.
- Two (29 percent) of the reported crashes were runoff-the-road (ROR) type crashes. One (1) of the crashes involved an eastbound vehicle and one (1) of the crashes involved a westbound vehicle.

SR1 between Roth Bridge
and Tybouts Corner

	Date	Time	Milepoint	Type	Severity	Direction
1	7/17/2011	21:31	5.87	Sideswipe-same	PDO	SB/SB
2	5/7/2011	9:55	5.4	Sideswipe-same	PDO	SB/SB
3	5/17/2011	19:07	5.8	Sideswipe-same	PDO	SB/SB
4	11/23/2011	16:31	5.83	Sideswipe-same	PDO	SB/SB
5	7/8/2011	15:13	5.81	Rear-end	PDO	SB/SB
6	7/25/2011	11:46	3.83	Rear-end	PDO	SB/SB
7	1/2/2011	4:42	4.12	ROR-HFO	PDO	SB
8	2/5/2011	8:10	3.02	Sideswipe-same	PDO	NB/NB
9	1/2/2011	4:30	6.49	Debris in roadway	PDO	NB/NB
10	6/8/2011	22:59	1.77	ROR-HFO	PDO	NB
11	8/30/2011	19:41	5.58	ROR-HFO, Rollover	Injury	SB
12	4/4/2011	9:07	7.74	Rear-end	PDO	SB/SB
13	1/6/2011	8:31	2.83	Debris in roadway	PDO	NB
14	6/19/2011	6:36	4.65	ROR-HFO, Rollover	PDO	NB
15	5/8/2011	0:43	0.36	Sideswipe-same	PDO	NB/NB
16	11/13/2011	4:00	1.18	ROR-HFO	PDO	NB
17	2/10/2011	11:24	2.03	Sideswipe-same	PDO	NB/NB
18	9/6/2011	11:08	6.6	ROR-HFO	PDO	SB
19	10/10/2011	17:11	7.82	Sideswipe-same	PDO	SB/SB
20	6/26/2011	22:50	0.83	ROR-HFO	PDO	SB
21	1/11/2011	20:32	3.3	ROR-HFO	PDO	NB
22	4/10/2011	19:27	3.7	ROR-HFO	PDO	SB
23	2/10/2011	19:33	4.02	ROR-HFO	Injury	SB
24	1/11/2011	22:05	5.38	Sideswipe-same	PDO	NB/NB
25	7/25/2011	7:48	2.82	ROR-HFO, Rollover	PDO	NB
26	6/28/2011	9:51	2.74	Sideswipe-same	Injury	NB/NB
27	1/14/2011	14:00	4.89	ROR-HFO	Injury	NB
28	5/23/2011	15:04	4.53	ROR-HFO	Injury	NB
29	4/12/2011	5:55	2.37	Rear-end	Injury	NB/NB
30	9/19/2011	18:00	4.9	Rear-end	PDO	SB/SB
31	2/13/2011	16:56	3.9	ROR-HFO	PDO	NB
32	1/18/2011	0:09	1.08	ROR-HFO	PDO	NB
33	7/1/2011	10:30	1.11	Debris in roadway	PDO	NB
34	5/25/2011	14:46	4.44	Animal, ROR-HFO	PDO	SB
35	11/1/2011	14:10	3.34	Debris in roadway	PDO	NB
36	1/18/2011	5:34	3.09	Sideswip-same	PDO	NB/NB
37	11/8/2011	14:08	1.21	ROR-HFO	Injury	NB
38	8/26/2011	14:25	5.74	Sideswipe-same	PDO	SB/SB
39	7/8/2011	13:29	6.06	Sideswipe-same	PDO	SB/SB
40	8/27/2011	13:25	5.3	ROR-HFO	PDO	SB
41	5/25/2011	21:23	7.91	ROR-HFO	PDO	SB
42	11/12/2011	6:00	2.49	Animal	PDO	NB
43	7/8/2011	18:45	5.32	Sideswipe-same	PDO	NB/NB/NB
44	2/17/2011	3:27	5.69	Sideswipe-same	PDO	SB/SB
45	7/8/2011	19:25	5.34	ROR-HFO	PDO	NB

SR1 between Roth Bridge
and Tybouts Corner

	Date	Time	Milepoint	Type	Severity	Direction
46	12/9/2011	2:31	4.19	ROR-HFO	Injury	SB
47	5/30/2011	12:51		ROR-HFO	PDO	NB
48	1/18/2011	5:37	2.19	ROR-HFO	PDO	SB
49	12/9/2011	5:48	4.37	ROR-HFO	PDO	NB
50	2/22/2011	5:33	3.09	ROR-HFO	PDO	NB
51	1/18/2011	7:14	2.03	Sideswipe-same	PDO	SB/SB
52	12/12/2011	15:40	4.9	ROR-HFO	Injury	NB
53	2/22/2011	6:26	2.22	ROR-HFO	Injury	NB
54	1/18/2011	7:31	7.9	Rear-end	PDO	SB/SB
55	2/22/2011	8:27	5.66	Rear-end	PDO	SB/SB
56	1/18/2011	7:40	5.92	Sideswipe-same	PDO	SB/SB
57	1/18/2011	0:30	0	Sideswipe-same	PDO	SB/SB
58	2/25/2011	13:38	1.05	ROR-HFO	Injury	NB
59	2/26/2011	15:11	1.33	ROR-HFO	PDO	NB
60	1/20/2011	17:34	3.39	Debris in roadway	PDO	SB
61	3/2/2011	19:35	8.3	Rear-end	PDO	SB/SB
62	1/24/2011	18:28	7.5	ROR-HFO	PDO	SB
63	3/15/2011	19:33	2.87	Head-on	Injury	NB/SB
64	1/26/2011	7:31	6.89	Rear-end	PDO	SB/SB
65	3/16/2011	11:45	5.24	ROR-HFO	PDO	NB/NB
66	1/27/2011	5:21	8.47	Sideswipe-same	PDO	SB/SB
67	2/1/2011	6:03	8.07	ROR-HFO	Injury	SB
68	9/26/2011	7:41	4.6	Rear-end	PDO	NB/NB
69	10/7/2011	0:41	3.01	ROR-HFO	Injury	NB
2011 Total Number of Crashes					69	

HFO: Hit-fixed-object

ROR: Run-off the Road
PDO: Property Damage Only

SR1 between Roth Bridge and Tybouts Corner

A total of sixty-nine (69) crashes were reported in 2011, and the following trends were identified:

- Fourteen (20 percent) of the sixty-nine reported crashes resulted in personal injury.
- Fifty-five (80 percent) of the sixty-nine reported crashes resulted in property damage only.
- Thirty-two (46 percent) of the reported crashes were runoff-the-road type crashes. Nineteen (19) (ROR) crashes involved northbound vehicles and twelve (12) crashes involved southbound vehicles.
- Nineteen (28 percent) of the reported crashes were sideswipe-same direction. Seven (7) crashes involved northbound vehicles and twelve (12) crashes involved southbound vehicles.
- Ten (15 percent) of the reported crashes were rear-end crashes.
- Five (7 percent) of the reported crashes involved road debris and a motor vehicle.
- Two (3 percent) of the reported crashes involved a deer and a motor vehicle.
- One (1 percent) of the reported crashes was a head-on crash.
and Bethel Church Road

	Date	Time	Milepoint	Type	Severity	Direction
$\mathbf{1}$	$9 / 3 / 2011$	$21: 14$	1.99	Debris in roadway	PDO	NB
$\mathbf{2}$	$4 / 2 / 2011$	$21: 17$	1.94	Sideswipe-same	PDO	SB
$\mathbf{3}$	$5 / 18 / 2011$	$21: 48$	2.12	Head-on	Injury	NB
$\mathbf{4}$	$11 / 11 / 2011$	$13: 00$	1.8	Sideswipe-same	Injury	SB/SB/SB
$\mathbf{5}$	$11 / 21 / 2011$	$22: 06$	2.55	ROR-HFO	PDO	EB/SB
$\mathbf{2 0 1 1}$ Total Number of Crashes						

HFO: Hit-fixed-object
ROR: Run-off the Road
PDO: Property Damage Only

US 301 between Summit Bridge and Bethel Church Road

A total of five (5) crashes were reported in 2011, and the following trends were identified:

- Two (40 percent) of the five reported crashes resulted in personal injury.
- Three (60 percent) of the four reported crashes resulted in property damage only.
- Two (40 percent) of the reported crashes were sideswipe-same direction crashes. Both crashes involved southbound vehicles.
- One (20 percent) crash was a head-on crash.
- One (20 percent) crash was a run-off-the-road type crash. The crash involved a southbound vehicle.
- One (20 percent) crash involved debris in the roadway and a motor vehicle.

Bethel Church Road

	Date	Time	Milepoint	Type	Severity	Direction
$\mathbf{1}$	$3 / 26 / 2011$	$20: 37$	1.97	Rear-end	PDO	SB/SB
$\mathbf{2}$	$4 / 22 / 2011$	$22: 03$	2.15	Rear-end	PDO	NB/NB/NB
$\mathbf{3}$	$12 / 13 / 2011$	$17: 24$	2.12	Rear-end	PDO	NB/NB/NB
$\mathbf{2 0 1 1}$ Total Number of Crashes						

HFO: Hit-fixed-object
ROR: Run-off the Road
PDO: Property Damage Only

US 301 at Bethel Church Road

A total of three (3) crashes were reported in 2011, and the following trends were identified:

- All of the reported crashes resulted in property damage only.
- All of the reported crashes were rear-end crashes. Two (2) of the crashes involved northbound vehicles and one (1) crash involved southbound vehicles.

Appendix D

Significant Incidents on SR 1 and Other Roadways in the Middletown Region

Significant Incidents on SR 1 that Could have Utilized the Spur Road to Accommodate Detoured Traffic - 2004 through present				
Date	Location	Event	Duration	Roads used for Detour
5/14/2004	SR 1 at SR 273	Property Damage Crash SB SR 1 Left Lane Closed	1.5 Hours	Unknown
9/24/2004	SR 1 South of SR 273	Personal Injury Crash - SB SR 1 Closed	1 Hours	Unknown
4/3/2005	SR 1 at SR 72	Personal Injury Crash - Right and Center Lane Closed on SB SR 1	0.5 Hour	Unknown
4/14/2005	SR 1 South of US 40	Dump Truck Rolled Over SB SR 1 Closed	3 Hours	Unknown
5/16/2005	NB SR 1 at Christiana Mall Ramp	Vehicle Fire - NB SR 1 Closed	1 Hour	Unknown
7/1/2005	$\begin{aligned} & \text { SB SR } 1 \text { South of } \\ & \text { SR } 273 \end{aligned}$	Possible Fatal Crash / Entrapment - SB SR 1 Closed	2 Hours	Unknown
8/7/2006	SB SR 1 at Christiana Mall Ramp	Tractor Trailer Rolled Over SB SR 1 Closed	7.5 Hours	Unknown
11/30/2006	NB SR 1 at Tybouts Corner	Personal Injury Crash NB SR 1 Closed	1 Hour	Unknown
1/31/2007	SB SR 1 North of School House Road	Property Damage Crash SB Left and Center Lane and NB Left Lane on SR 1 Closed	1.5 Hours	Unknown
2/14/2007	NB SR 1 South of SR 72	Tractor Trailer Rolled Over NB SR 1 Closed at SR 896	6.5 Hours	Unknown
3/7/2007	NB SR 1 at Christiana Mall	Multiple (6) Vehicle Personal Injury Crash - NB SR 1 Closed	1.5 Hours	$\begin{aligned} & \text { US 13, SR 72, SR } 273 \\ & \text { and I-95 } \end{aligned}$
5/14/2007	SB SR 1 on Roth Bridge	Personal Injury Crash SB SR 1 Closed	1 Hour	Unknown
6/27/2007	SB SR 1 North of Roth Bridge	Tractor Trailer Rolled Over SB SR 1 Closed	3 Hours	US 13 and SR 72
9/2/2007	NB SR 1 near Hyetts Corner Road	Personal Injury Crash NB SR 1 Closed	2 Hours	Unknown
9/7/2007	SR 1 at SR 72	Vehicle Fire \& Clean-up SR 1 Closed at SR 72	3 Hours	SR 72
11/29/2007	SB SR 1 North of Roth Bridge	Fluid Spilled on Road - SB SR 1 Right Lane and Shoulder Closed	1 Hour	Unknown
1/29/2008	SB SR 1, South of SR 273	Property Damage Crash/ Rollover - SB SR 1 Left Lane Closed	1.5 Hours	Unknown
2/10/2008	SB SR 1 at Christiana Mall Ramp	Personal Injury Crash - Left Lanes Closed on NB \& SB SR 1 s/o I-95	3 Hours	Unknown
2/12/2008	SR 1 near I-95	DSP Fatal Accident Reconstruction - Partial Closure	9.5 Hours	Unknown
2/12/2008	SR 1 between US 40 and SR 273	DSP Fatal Accident Reconstruction - Partial Closure	12 Hours	Unknown
4/2/2008	SR 1 at SR 273	Possible Fatal Crash involving 3 vehicles - NB SR 1 and SB SR 1 Ramp to SR 273 Closed	3 Hours	US 13
6/17/2008	NB SR 1 at SR 273	Possible Fatal Crash / damaged bridge - NB SR 1 Closed	3 Hours	Unknown
3/30/2009	NB SR 1 North of SR 72	Personal Injury Crash involving 4 vehicles - Partial closure	2 Hours	US 13
4/5/2009	SB SR 1 Ramp at Lorewood Grove Road	Tractor Trailer Rolled Over SB SR 1 Closed	9 Hours	SR 9, US13 and SR 72

Significant Incidents on SR 1 that Could have Utilized the Spur Road to Accommodate Detoured Traffic - 2004 through present (Continued)				
Date	Location	Event	Duration	Roads used for Detour
6/29/2009	SR 1 at SR 273	Truck Rolled Over SB SR 1 Closed	2.5 Hours	Unknown
8/2/2009	SR 1 at SR 273	Personal Injury Crash SB SR 1 Closed at SR 273	2.5 Hours	Unknown
8/6/2009	SR 1 on Roth Bridge	Fatal Crash/ Vehicle Fire SB SR 1 Closed	Unknown	Unknown
4/5/2010	SB SR 1, South of SR 71	Personal Injury Crash SB SR 1 Closed	Unknown	Unknown
4/5/2010	NB SR 1 at Christiana Mall	Personal Injury Crash Partial Closure on NB SR 1	Unknown	Unknown
5/27/2010	NB SR 1, North of US 40	Personal Injury Crash NB SR 1 at US 40 Closed	Unknown	Unknown
3/17/2011	NB SR 1 at Biddles Toll Plaza	EZ Pass Lane Closure	7.5 Hours	US 13 / Others
4/8/2011	NB SR 1 at Christiana Mall Ramp	Jack-Knifed Tractor-Trailer	1 Hour	SR 273
6/2/2011	SB SR 1 at Biddles Toll Plaza	EZ Pass Lane Closure	7.5 Hours	US 13 / Others
7/17/2011	SR 1 near Christiana Mall	Fatal Crash in the work zone Both NB \& SB SR 1 Closed	3 Hours	SR 273
9/29/2011	NB SR 1 near SR 72 Ramps	Truck Fire - NB SR 1 Closed	1.5 Hours	Unknown
10/27/2011	SB SR 1 over Drawyers Creek Overpass	Personal Injury / Possible Fatal Crash - NB \& SB SR 1 Closed	3 Hours	Unknown
10/27/2011	NB SR 1 at Christiana Mall Ramp	Personal Injury Crash - NB SR 1 On-Ramp to I-95 Closed	12.5 Hours	SR 273
12/12/2011	NB SR 1 at Tybouts Corner	Vehicle Crash - NB SR 1 Closed	1 Hour	US 13
11/8/2011	NB SR 1 on Roth Bridge	Vehicle Crash - NB SR 1 Closed	1.5 Hours	US 13 / Others
Total			123.5 Hours	

Significant Incidents in the Middletown Region that Could have Utilized the Spur Road to Accommodate Detoured Traffic - 2004 through present				
Date	Location	Event	Duration	Roads used for Detour
$11 / 29 / 2004$	Bethel Church Rdload	Personal Injury Crash - SB US 301 Left Lane and Left-turn Lane Closed	1 Hour	Right lane and shoulder on US 301
$9 / 3 / 2005$	US 301 at SR 71	Property Damage Crash - US 301 SB and SR 71 NB Left-turn Lane Closed	1 Hour	Access to Middletown Village back on to US 301
$1 / 30 / 2006$	SB US 301 at Bethel Church Road	Property Damage Crash \& Fuel Spill - SB US 301 Closed	7 Hours	Bethel Church Road, Choptank Road and Churchtown Road
$8 / 24 / 2006$	US 301 North of Churchtown Road	Property Damage Crash - US 301 Closed	1 Hour	Unknown
$12 / 25 / 2006$	SB US 301 South of Summit Bridge	Personal Injury Crash - SB US 301 Closed	1 Hour	Shoulder Lane on
SB US 301				

Appendix E

Peak Hour Traffic Volumes, SYNCHRO Capacity Reports and Delay Study Results

R ummel,K lepper \& K ahl,LLP

Consulting Engineers
 81 Mosher St
 Baltimore MD 21217

File Name : US301-OldSummitBridgeRd
Site Code : 00000000
Start Date : 10/4/2011
Page No : 8

	US 301 From North					US 301 From South					Old Summit Bridge Rd From East					Old Summit Bridge Rd From West					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 12:30 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:15 AM																					
07:15 AM	14	157	0	0	171	0	290	12	0	302	10	0	2	0	12	0	0	0	0	0	485
07:30 AM	16	149	0	0	165	0	334	9	0	343	6	0	7	0	13	0	0	0	0	0	521
07:45 AM	14	168	0	0	182	0	245	1	0	246	9	0	4	0	13	0	0	0	0	0	441
08:00 AM	3	144	0	0	147	0	253	8	0	261	8	0	4	0	12	0	0	0	0	0	420
Total Volume	47	618	0	0	665	0	1122	30	0	1152	33	0	17	0	50	0	0	0	0	0	1867
\% App. Total	7.1	92.9	0	0		0	97.4	2.6	0		66	0	34	0		0	0	0	0		
PHF	. 734	. 920	. 000	. 000	. 913	. 000	. 840	. 625	. 000	. 840	. 825	. 000	. 607	. 000	. 962	. 000	. 000	. 000	. 000	. 000	. 896

Peak Hour Analysis From 12:45 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:45 PM

04:45 PM	16	283	0	0	299	0	161	9	0	170	9	0	4	0	13	0	0	0	0	0	482
05:00 PM	26	247	0	0	273	0	191	8	0	199	4	0	5	0	9	0	0	0	0	0	481
05:15 PM	22	319	0	0	341	0	185	15	0	200	13	0	4	0	17	0	0	0	0	0	558
05:30 PM	16	296	0	0	312	0	188	19	0	207	14	0	8	0	22	0	0	0	0	0	541
Total Volume	80	1145	0	0	1225	0	725	51	0	776	40	0	21	0	61	0	0	0	0	0	2062
\% App. Total	6.5	93.5	0	0		0	93.4	6.6	0		65.6	0	34.4	0		0	0	0	0		
PHF	769	. 897	000	000	. 898	000	. 949	671	000	. 937	714	. 000	. 656	000	693	000	000	000	000	. 000	924

R ummel,K lepper \& K ahl,LLP

Consulting Engineers
 81 Mosher St
 Baltimore MD 21217

File Name : US301-SR896
Site Code : 00000000
Start Date : 10/5/2011
Page No : 8

	US 301 From North					US 301 From South					Boyds Corner Rd (SR 896) From East					Churchtown Rd From West					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 12:30 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:15 AM																					
07:15 AM	75	111	4	0	190	3	217	45	0	265	29	9	78	0	116	17	34	2	0	53	624
07:30 AM	41	114	5	0	160	1	220	35	0	256	33	7	93	0	133	17	37	4	0	58	607
07:45 AM	58	121	3	0	182	4	164	48	0	216	36	3	72	0	111	6	27	4	0	37	546
08:00 AM	42	111	6	0	159	3	199	45	0	247	31	4	76	0	111	7	27	4	0	38	555
Total Volume	216	457	18	0	691	11	800	173	0	984	129	23	319	0	471	47	125	14	0	186	2332
\% App. Total	31.3	66.1	2.6	0		1.1	81.3	17.6	0		27.4	4.9	67.7	0		25.3	67.2	7.5	0		
PHF	. 720	. 944	. 750	. 000	. 909	. 688	. 909	. 901	. 000	. 928	. 896	. 639	. 858	. 000	. 885	. 691	. 845	. 875	. 000	. 802	. 934

Peak Hour Analys Peak Hour for Entir	$\begin{aligned} & \text { From } \\ & \text { Inter: } \end{aligned}$	$\begin{aligned} & 2: 45 \mathrm{P} \\ & \text { ction } \mathrm{E} \end{aligned}$	$\begin{aligned} & 05: 4 \\ & \text { ins at } \end{aligned}$	$\begin{aligned} & \mathrm{M}-\mathrm{P} \\ & 00 \mathrm{PN} \end{aligned}$																	
05:00 PM	69	192	22	0	283	5	150	40	0	195	79	36	41	0	156	10	6	4	0	20	654
05:15 PM	81	218	14	0	313	4	149	49	0	202	67	25	59	0	151	14	7	4	0	25	691
05:30 PM	66	215	14	0	295	3	133	48	0	184	64	30	69	0	163	16	16	4	0	36	678
05:45 PM	75	172	21	0	268	4	129	45	0	178	73	30	43	0	146	14	16	4	0	34	626
Total Volume	291	797	71	0	1159	16	561	182	0	759	283	121	212	0	616	54	45	16	0	115	2649
\% App. Total	25.1	68.8	6.1	0		2.1	73.9	24	0		45.9	19.6	34.4	0		47	39.1	13.9	0		
PHF	898	. 914	. 807	. 000	. 926	800	. 935	. 929	. 000	. 939	. 896	. 840	. 768	00	. 945	844	. 703	1.000	00	. 799	. 958

R ummel,K lepper \& K ahl,LLP

Consulting Engineers
 81 Mosher St

Baltimore MD 21217
File Name : US301-Armstrong Corner Site Code : 00000000
Start Date : 10/4/2011
Page No : 9

	US 301 From North					$\begin{gathered} \text { US } 301 \\ \text { From South } \end{gathered}$					Marl Pit Rd From East					Armstrong Corner Rd From West					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 12:30 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:00 AM																					
07:00 AM	11	145	2	0	158	4	209	28	0	241	40	14	37	0	91	2	10	3	0	15	505
07:15 AM	17	121	2	0	140	6	217	32	0	255	31	5	34	0	70	5	24	6	0	35	500
07:30 AM	17	125	0	0	142	3	209	32	0	244	35	9	48	0	92	1	20	4	0	25	503
07:45 AM	23	157	2	0	182	6	199	26	0	231	40	8	25	0	73	0	12	4	0	16	502
Total Volume	68	548	6	0	622	19	834	118	0	971	146	36	144	0	326	8	66	17	0	91	2010
\% App. Total	10.9	88.1	1	0		2	85.9	12.2	0		44.8	11	44.2	0		8.8	72.5	18.7	0		
PHF	. 739	. 873	. 750	. 000	. 854	. 792	. 961	. 922	. 000	. 952	. 913	. 643	. 750	. 000	. 886	. 400	. 688	. 708	. 000	. 650	. 995

Peak Hour Analysis From 12:45 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 05:00 PM

05:00 PM	29	223	3	0	255	13	169	44	0	226	64	15	21	0	100	2	3	5	0	10	591
05:15 PM	39	250	3	0	292	5	165	44	0	214	53	13	24	0	90	1	13	8	0	22	618
05:30 PM	41	256	1	0	298	6	154	48	0	208	50	15	17	0	82	2	10	4	0	16	604
05:45 PM	41	229	8	0	278	9	153	53	0	215	65	12	13	0	90	1	10	6	0	17	600
Total Volume	150	958	15	0	1123	33	641	189	0	863	232	55	75	0	362	6	36	23	0	65	2413
\% App. Total	13.4	85.3	1.3	0		3.8	74.3	21.9	0		64.1	15.2	20.7	0		9.2	55.4	35.4	0		
PHF	. 915	. 936	. 469	. 000	. 942	. 635	. 948	. 892	000	. 955	. 892	. 917	781	. 000	. 905	750	. 692	719	. 000	. 739	976

R ummel,K lepper \& K ahl,LLP

Consulting Engineers
 81 Mosher St
 Baltimore MD 21217

File Name : US301-SR71
Site Code : 00000000
Start Date : 10/5/2011
Page No : 8

	US 301 From North					$\begin{gathered} \text { US } 301 \\ \text { From South } \end{gathered}$					Broad St (SR 71) From East					From West					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 12:30 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:00 AM																					
07:00 AM	56	121	0	0	177	0	154	12	0	166	11	0	93	0	104	0	0	0	0	0	447
07:15 AM	34	101	0	0	135	0	121	16	0	137	10	0	97	0	107	0	0	0	0	0	379
07:30 AM	58	99	0	0	157	0	140	9	0	149	8	0	75	0	83	0	0	0	0	0	389
07:45 AM	61	128	0	0	189	0	111	10	0	121	18	0	75	0	93	0	0	0	0	0	403
Total Volume	209	449	0	0	658	0	526	47	0	573	47	0	340	0	387	0	0	0	0	0	1618
\% App. Total	31.8	68.2	0	0		0	91.8	8.2	0		12.1	0	87.9	0		0	0	0	0		
PHF	. 857	. 877	. 000	. 000	. 870	. 000	. 854	. 734	. 000	. 863	. 653	. 000	. 876	. 000	. 904	. 000	. 000	. 000	. 000	. 000	. 905

R ummel,K lepper \& K ahl,LLP

Consulting Engineers
 81 Mosher St
 Baltimore MD 21217

File Name : US301-SR299
Site Code : 00000000
Start Date : 10/4/2011
Page No : 8

	US 301 From North					US 301 From South					Main St (SR 299) From East					Bunker Hill Rd (SR 299) From West					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 12:30 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 07:00 AM																					
07:00 AM	16	54	29	0	99	10	81	40	0	131	20	55	10	0	85	18	60	12	0	90	405
07:15 AM	16	57	35	0	108	6	80	19	0	105	39	49	15	0	103	20	62	13	0	95	411
07:30 AM	14	53	11	0	78	8	82	34	0	124	30	35	15	0	80	8	49	9	0	66	348
07:45 AM	26	76	17	0	119	13	81	31	0	125	36	51	21	0	108	4	40	8	0	52	404
Total Volume	72	240	92	0	404	37	324	124	0	485	125	190	61	0	376	50	211	42	0	303	1568
\% App. Total	17.8	59.4	22.8	0		7.6	66.8	25.6	0		33.2	50.5	16.2	0		16.5	69.6	13.9	0		
PHF	. 692	. 789	. 657	. 000	. 849	. 712	. 988	. 775	. 000	. 926	. 801	. 864	. 726	. 000	870	. 625	. 851	. 808	. 000	. 797	. 954

Peak Hour Analy Peak Hour for En	From Inters	$\begin{aligned} & 45 \mathrm{P} \\ & \text { tion } \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 05: } \\ & \text { is a } \end{aligned}$	$00 \text { PN }$																	
05:00 PM	30	102	7	0	139	12	113	31	0	156	80	42	26	0	148	26	60	17	0	103	546
05:15 PM	47	90	10	1	148	10	95	48	0	153	54	42	34	0	130	28	77	17	0	122	553
05:30 PM	48	107	11	0	166	10	98	44	0	152	60	50	30	0	140	16	61	9	0	86	544
05:45 PM	31	110	13	1	155	7	85	33	0	125	69	51	28	1	149	19	67	13	0	99	528
Total Volume	156	409	41	2	608	39	391	156	0	586	263	185	118	1	567	89	265	56	0	410	2171
\% App. Total	25.7	67.3	6.7	0.3		6.7	66.7	26.6	0		46.4	32.6	20.8	0.2		21.7	64.6	13.7	0		
PHF	813	. 930	. 788	. 500	916	. 813	. 865	. 813	. 000	. 939	. 822	907	. 868	. 250	. 951	795	. 860	. 824	. 000	. 840	. 981

	4			7			4	4	7		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊＊	个 \uparrow	$\stackrel{7}{ }$	\％${ }^{1 / 1}$	性	「	\％	个 4	F	\％	个4	F
Volume（vph）	50	211	42	125	190	61	37	324	124	72	240	92
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	330		210	390		230	480		307	290		300
Storage Lanes	2		1	2		1	1		1	1		1
Taper Length（tt）	100			140			180			85		
Lane Utill．Factor	0.97	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	3502	3574	1538	3127	3574	1538	1719	2983	1553	1752	3059	1615
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3502	3574	1538	3127	3574	1538	1719	2983	1553	1752	3059	1615
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			52			70			133			108
Link Speed（mph）		35			35			50			50	
Link Distance（t）		1027			832			1861			1623	
Travel Time（s）		20.0			16.2			25.4			22.1	
Peak Hour Factor	0.80	0.80	0.80	0.87	0.87	0.87	0.93	0.93	0.93	0.85	0.85	0.85
Heavy Vehicles（\％）	0\％	1\％	5\％	12\％	1\％	5\％	5\％	21\％	4\％	3\％	18\％	0\％
Adj．Flow（vph）	62	264	52	144	218	70	40	348	133	85	282	108
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	62	264	52	144	218	70	40	348	133	85	282	108
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（t）		24			24			12			12	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（t）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15			15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right									
Leading Detector（tt）	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector（tt）	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position（ft）	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size（ft）	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl＋Ex	Cl＋Ex	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position（ft）		94			94			94			94	
Detector 2 Size（ft）		6			6			6			6	
Detector 2 Type		Cl＋Ex			Cl＋Ex			Cl＋Ex			Cl＋Ex	
Detector 2 Channel												
Detector 2 Extend（s）		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	custom	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases			8			8			6			2

	4		\geqslant	7	4		4	\dagger	\%	*	\ddagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	3	8	8	7	4	8	1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	16.0	16.0	5.0	16.0	16.0
Minimum Split (s)	11.0	12.0	12.0	11.0	12.0	12.0	11.0	23.0	23.0	11.0	23.0	23.0
Total Split (s)	40.0	19.0	19.0	40.0	19.0	19.0	16.0	67.0	67.0	24.0	75.0	75.0
Total Split (\%)	26.7\%	12.7\%	12.7\%	26.7\%	12.7\%	12.7\%	10.7\%	44.7\%	44.7\%	16.0\%	50.0\%	50.0\%
Maximum Green (s)	35.0	13.0	13.0	35.0	13.0	13.0	11.0	60.0	60.0	19.0	68.0	68.0
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0	4.0	3.0	5.0	5.0	3.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	7.0	7.0	5.0	7.0	7.0
Lead/Lag	Lead	Lag	Lag									
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min						
Act Effct Green (s)	8.1	18.3	18.3	12.3	24.7	18.3	8.9	83.8	83.8	12.6	89.6	89.6
Actuated g/C Ratio	0.05	0.12	0.12	0.08	0.16	0.12	0.06	0.56	0.56	0.08	0.60	0.60
v/c Ratio	0.33	0.61	0.22	0.56	0.37	0.28	0.39	0.21	0.14	0.58	0.15	0.11
Control Delay	72.6	68.1	15.9	74.4	57.5	14.8	78.2	18.4	3.5	73.5	13.9	3.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	72.6	68.1	15.9	74.4	57.5	14.8	78.2	18.4	3.5	73.5	13.9	3.8
LOS	E	E	B	E	E	B	E	B	A	E	B	A
Approach Delay		61.7			56.2			19.2			22.3	
Approach LOS		E			E			B			C	

Area Type: Other
Cycle Length: 150
Actuated Cycle Length: 150
Offset: 80 (53\%), Referenced to phase 2:SBT and 6:NBT, Start of Green
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.61

Intersection Signal Delay: 37.8
Intersection Capacity Utilization 46.7\%
Analysis Period (min) 15

Intersection LOS: D
ICU Level of Service A

Splits and Phases: 2: US 301 \& Bunker Hill Rd

	\rangle						4	\uparrow	P		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢		\%	¢	「	${ }^{7}$	\uparrow	F
Volume (vph)	8	66	17	146	36	144	19	834	118	68	548	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (tt)	0		0	0		0	250		145	250		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (tt)	25			25			200			200		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.975			0.940				0.850			0.850
Flt Protected		0.996			0.978		0.950			0.950		
Satd. Flow (prot)	0	1750	0	0	1711	0	1805	1681	1495	1805	1610	1615
Flt Permitted		0.949			0.707		0.340			0.117		
Satd. Flow (perm)	0	1667	0	0	1237	0	646	1681	1495	222	1610	1615
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7			25				48			2
Link Speed (mph)		40			50			50			50	
Link Distance (tt)		1915			1875			944			1823	
Travel Time (s)		32.6			25.6			12.9			24.9	
Peak Hour Factor	0.65	0.65	0.65	0.89	0.89	0.89	0.95	0.95	0.95	0.85	0.85	0.85
Heavy Vehicles (\%)	25\%	3\%	6\%	2\%	3\%	2\%	0\%	13\%	8\%	0\%	18\%	0\%
Adj. Flow (vph)	12	102	26	164	40	162	20	878	124	80	645	7
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	140	0	0	366	0	20	878	124	80	645	7
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		0			0			12			12	
Link Offset(tt)		0			0			0			0	
Crosswalk Width(tt)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (tt)	20	100		20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	20
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(t)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4			6		6	2		2

	4			\checkmark			4	\dagger	p	V	\dagger	\pm
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	8	8		4	4		1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	15.0	15.0	4.0	15.0	15.0
Minimum Split (s)	12.0	12.0		12.0	12.0		11.0	38.0	38.0	11.0	38.0	38.0
Total Split (s)	40.0	40.0		40.0	40.0		25.0	85.0	85.0	25.0	85.0	85.0
Total Split (\%)	26.7\%	26.7\%		26.7\%	26.7\%		16.7\%	56.7\%	56.7\%	16.7\%	56.7\%	56.7\%
Maximum Green (s)	34.0	34.0		34.0	34.0		20.0	78.0	78.0	18.0	80.0	80.0
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	5.0	5.0	5.0	3.0	3.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0			6.0		5.0	7.0	7.0	7.0	5.0	5.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	6.0	6.0	6.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Min	C-Min	Min	C-Max	C-Max
Act Effct Green (s)		34.0			34.0		93.4	85.3	85.3	102.9	98.2	98.2
Actuated g/C Ratio		0.23			0.23		0.62	0.57	0.57	0.69	0.65	0.65
v/c Ratio		0.37			1.22		0.04	0.92	0.14	0.30	0.61	0.01
Control Delay		49.6			169.6		3.2	33.2	2.2	16.4	18.3	8.5
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		49.6			169.6		3.2	33.2	2.2	16.4	18.3	8.5
LOS		D			F		A	C	A	B	B	A
Approach Delay		49.6			169.6			28.9			18.0	
Approach LOS		D			F			C			B	
Intersection Summary												

Area Type:
Cycle Length: $150 \quad$ Other
Actuated Cycle Length: 150
Offset: 52 (35\%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green
Natural Cycle: 100
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.22	
Intersection Signal Delay: 49.4	Intersection LOS: D
Intersection Capacity Utilization 89.8%	ICU Level of Service E
Analysis Period $(\min) 15$	

Splits and Phases: 7: US 301 \& Armstrong Corner Rd

	$\stackrel{ }{*}$						4			＊	$\frac{1}{7}$	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	\uparrow		\％${ }^{1 / 1}$	\uparrow	「	\％	个 \uparrow	「	\％${ }^{\text {\％}}$	性	「
Volume（vph）	47	125	14	129	23	319	11	800	173	216	457	18
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（t）	100		0	450		466	195		370	400		220
Storage Lanes	1		0	2		1	1		1	2		1
Taper Length（ft）	100			100			60			150		
Lane Util．Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt		0.984				0.850			0.850			0.850
FIt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1805	1808	0	2824	1681	1509	1421	3343	1223	3335	3374	1455
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	1805	1808	0	2824	1681	1509	1421	3343	1223	3335	3374	1455
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		3				358			186			20
Link Speed（mph）		45			25			50			50	
Link Distance（t）		1984			1201			1469			1377	
Travel Time（s）		30.1			32.8			20.0			18.8	
Peak Hour Factor	0.80	0.80	0.80	0.89	0.89	0.89	0.93	0.93	0.93	0.91	0.91	0.91
Heavy Vehicles（\％）	0\％	3\％	7\％	24\％	13\％	7\％	27\％	8\％	32\％	5\％	7\％	11\％
Adj．Flow（vph）	59	156	18	145	26	358	12	860	186	237	502	20
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	59	174	0	145	26	358	12	860	186	237	502	20
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（t）		24			24			24			24	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector（tt）	20	100		20	100	20	20	100	20	20	100	20
Trailing Detector（ft）	0	0		0	0	0		0	0	0	0	0
Detector 1 Position（ft）	0	0		0	0	0	0	0	0	0	0	0
Detector 1 Size（ft）	20	6		20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl＋Ex	Cl＋Ex		Cl＋Ex	Cl＋Ex	Cl＋Ex	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue（s）	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay（s）	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position（ft）		94			94			94			94	
Detector 2 Size（ft）		6			6			6			6	
Detector 2 Type		Cl＋Ex			Cl＋Ex			Cl＋Ex			Cl＋Ex	
Detector 2 Channel												
Detector 2 Extend（s）		0.0			0.0			0.0			0.0	
Turn Type	Split	NA		Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	8	8		4	4		1	6		5	2	
Permitted Phases						4			6			2

	\rangle			\checkmark			4	\uparrow	p		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	8	8		4	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	5.0	5.0		10.0	10.0	10.0	5.0	20.0	20.0	5.0	20.0	20.0
Minimum Split (s)	12.0	12.0		17.0	17.0	17.0	12.0	29.0	29.0	12.0	29.0	29.0
Total Split (s)	32.0	32.0		35.0	35.0	35.0	30.0	53.0	53.0	30.0	53.0	53.0
Total Split (\%)	21.3\%	21.3\%		23.3\%	23.3\%	23.3\%	20.0\%	35.3\%	35.3\%	20.0\%	35.3\%	35.3\%
Maximum Green (s)	26.0	26.0		29.0	29.0	29.0	24.0	45.0	45.0	24.0	45.0	45.0
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	5.0	5.0	4.0	5.0	5.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	3.0	3.0	2.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	8.0	8.0	6.0	8.0	8.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?												
Vehicle Extension (s)	4.0	4.0		4.0	4.0	4.0	4.0	5.0	5.0	4.0	5.0	5.0
Recall Mode	None	None		None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Act Efftt Green (s)	20.3	20.3		16.6	16.6	16.6	7.9	70.3	70.3	16.9	87.0	87.0
Actuated g/C Ratio	0.14	0.14		0.11	0.11	0.11	0.05	0.47	0.47	0.11	0.58	0.58
v/c Ratio	0.24	0.70		0.47	0.14	0.74	0.16	0.55	0.28	0.63	0.26	0.02
Control Delay	58.6	75.5		66.2	59.1	15.2	85.8	16.5	1.8	69.3	17.9	8.6
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	58.6	75.5		66.2	59.1	15.2	85.8	16.5	1.8	69.3	17.9	8.6
LOS	E	E		E	E	B	F	B	A	E	B	A
Approach Delay		71.2			31.3			14.7			33.7	
Approach LOS		E			C			B			C	

Area Type: Other

Cycle Length: 150
Actuated Cycle Length: 150
Offset: 89 (59\%), Referenced to phase 2:SBT and 6:NBT, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.74
Intersection Signal Delay: $28.8 \quad$ Intersection LOS: C
Intersection Capacity Utilization 65.7\% ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 8: US 301 \& Churchtown Rd/SR 896

	\bigcirc	4	$\dagger 1$		7	\pm	$\frac{1}{1}$
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{7}$	「	\#	44	「	${ }^{1}$	44
Volume (vph)	33	17	0	1122	30	47	618
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	100	250		384	445	
Storage Lanes	1	1	1		1	1	
Taper Length (ft)	25		85			85	
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Frt		0.850			0.850		
Flt Protected	0.950					0.950	
Satd. Flow (prot)	1805	1371	1900	3438	1615	1770	3312
Flt Permitted	0.950					0.149	
Satd. Flow (perm)	1805	1371	1900	3438	1615	278	3312
Right Turn on Red		Yes			Yes		
Satd. Flow (RTOR)		19			36		
Link Speed (mph)	35			55			55
Link Distance (ft)	277			1231			2058
Travel Time (s)	5.4			15.3			25.5
Peak Hour Factor	0.91	0.91	0.84	0.84	0.84	0.91	0.91
Heavy Vehicles (\%)	0\%	6\%	0\%	5\%	0\%	2\%	9\%
Parking (\#/hr)		0					
Adj. Flow (vph)	36	19	0	1336	36	52	679
Shared Lane Traffic (\%)							
Lane Group Flow (vph)	36	19	0	1336	36	52	679
Enter Blocked Intersection	No						
Lane Alignment	Left	Right	R NA	Left	Right	Left	Left
Median Width(ft)	12			12			12
Link Offset(ft)	0			0			0
Crosswalk Width(ft)	16			16			16
Two way Left Turn Lane							
Headway Factor	1.00	1.14	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	9		9	15	
Number of Detectors	1	1	1	2	1	1	2
Detector Template	Left	Right	Left	Thru	Right	Left	Thru
Leading Detector (ft)	20	20	20	100	20	20	100
Trailing Detector (ft)	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	20	20	6	20	20	6
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$						
Detector 1 Channel							
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)				94			94
Detector 2 Size(ft)				6			6
Detector 2 Type				$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$
Detector 2 Channel							
Detector 2 Extend (s)				0.0			0.0
Turn Type	NA	Perm	pm+pt	NA	Perm	pm+pt	NA
Protected Phases	4		1	6		5	2

Splits and Phases: 10: US 301 \& Old Summit Bridge Road

	7	4		p	\pm	\dagger
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{7}$	「	4	7	1	4
Volume (vph)	47	340	526	47	209	449
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	315	0		400	250	
Storage Lanes	1	1		1	1	
Taper Length (ft)	25				50	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850		0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1543	1538	1610	1380	1703	1712
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1543	1538	1610	1380	1703	1712
Right Turn on Red		Yes		No		
Satd. Flow (RTOR)		378				
Link Speed (mph)	35		45			50
Link Distance (ft)	1186		916			549
Travel Time (s)	23.1		13.9			7.5
Peak Hour Factor	0.90	0.90	0.86	0.86	0.87	0.87
Heavy Vehicles (\%)	17\%	5\%	18\%	17\%	6\%	11\%
Adj. Flow (vph)	52	378	612	55	240	516
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	52	378	612	55	240	516
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2	1	1	2
Detector Template	Left	Right	Thru	Right	Left	Thru
Leading Detector (ft)	20	20	100	20	20	100
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	20	6	20	20	6
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)			94			94
Detector 2 Size(ft)			6			6
Detector 2 Type			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$
Detector 2 Channel						
Detector 2 Extend (s)			0.0			0.0
Turn Type	NA	Free	NA	Prot	Prot	NA
Protected Phases			6	6	5	2
Permitted Phases	7	Free				

					\pm	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Detector Phase	7		6	6	5	2
Switch Phase						
Minimum Initial (s)	6.0		15.0	15.0	8.0	15.0
Minimum Split (s)	16.0		30.0	30.0	15.0	30.0
Total Split (s)	30.0		68.0	68.0	52.0	120.0
Total Split (\%)	20.0\%		45.3\%	45.3\%	34.7\%	80.0\%
Maximum Green (s)	21.0		59.0	59.0	46.0	111.0
Yellow Time (s)	5.0		5.0	5.0	4.0	5.0
All-Red Time (s)	4.0		4.0	4.0	2.0	4.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	9.0		9.0	9.0	6.0	9.0
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?						
Vehicle Extension (s)	4.0		7.0	7.0	4.0	7.0
Recall Mode	None		C-Min	C-Min	None	C-Min
Act Effct Green (s)	11.4	150.0	90.3	90.3	27.5	125.6
Actuated g/C Ratio	0.08	1.00	0.60	0.60	0.18	0.84
v/c Ratio	0.44	0.25	0.63	0.07	0.77	0.36
Control Delay	77.0	0.4	21.9	10.7	73.8	3.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	77.0	0.4	21.9	10.7	73.8	3.7
LOS	E	A	C	B	E	A
Approach Delay	9.7		21.0			25.9
Approach LOS	A		C			C
Intersection Summary						

Area Type: Other

Cycle Length: 150
Actuated Cycle Length: 150
Offset: 136 (91\%), Referenced to phase 2:SBT and 6:NBT, Start of Green
Natural Cycle: 75
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.77
Intersection Signal Delay: 20.4 Intersection LOS: C
Intersection Capacity Utilization 64.3\% ICU Level of Service C
Analysis Period (min) 15

Splits and Phases: \quad 30: US 301 \& SR 71

	$\stackrel{ }{*}$						4	4	7		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％${ }^{1 / 1}$	¢ \uparrow	F	\％＊	个4	「	\％	¢ \uparrow	「	7	性	「
Volume（vph）	89	265	56	263	185	118	39	391	156	156	409	41
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ti）	330		210	390		230	480		307	290		300
Storage Lanes	2		1	2		1	1		1	1		1
Taper Length（ft）	100			140			180			85		
Lane Utill．Factor	0.97	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt			0.850			0.850			0.850			0.850
FIt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	3502	3610	1615	3367	3539	1482	1805	3059	1495	1770	3252	1583
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	3502	3610	1615	3367	3539	1482	1805	3059	1495	1770	3252	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			67			124			166			45
Link Speed（mph）		35			35			50			50	
Link Distance（t）		1051			832			1861			1623	
Travel Time（s）		20.5			16.2			25.4			22.1	
Peak Hour Factor	0.84	0.84	0.84	0.95	0.95	0.95	0.94	0.94	0.94	0.92	0.92	0.92
Heavy Vehicles（\％）	0\％	0\％	0\％	4\％	2\％	9\％	0\％	18\％	8\％	2\％	11\％	2\％
Adj．Flow（vph）	106	315	67	277	195	124	41	416	166	170	445	45
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	106	315	67	277	195	124	41	416	166	170	445	45
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（t）		24			24			12			12	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（tt）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right									
Leading Detector（tt）	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector（tt）	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position（t）	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size（ft）	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex	Cl＋Ex	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position（tt）		94			94			94			94	
Detector 2 Size（ft）		6			6			6			6	
Detector 2 Type		Cl＋Ex			Cl＋Ex			Cl＋Ex			Cl＋Ex	
Detector 2 Channel												
Detector 2 Extend（s）		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	custom	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases			8			8			6			2

	4						4	\uparrow	7		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	3	8	8	7	4	8	1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	16.0	16.0	5.0	16.0	16.0
Minimum Split (s)	11.0	12.0	12.0	11.0	12.0	12.0	11.0	23.0	23.0	11.0	23.0	23.0
Total Split (s)	40.0	19.0	19.0	40.0	19.0	19.0	16.0	67.0	67.0	24.0	75.0	75.0
Total Split (\%)	26.7\%	12.7\%	12.7\%	26.7\%	12.7\%	12.7\%	10.7\%	44.7\%	44.7\%	16.0\%	50.0\%	50.0\%
Maximum Green (s)	35.0	13.0	13.0	35.0	13.0	13.0	11.0	60.0	60.0	19.0	68.0	68.0
Yellow Time (s)	3.0	4.0	4.0	3.0	4.0	4.0	3.0	5.0	5.0	3.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	6.0	6.0	5.0	6.0	6.0	5.0	7.0	7.0	5.0	7.0	7.0
Lead/Lag	Lead	Lag	Lag									
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	4.0
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min						
Act Effct Green (s)	9.9	22.5	22.5	17.7	30.3	22.5	8.8	66.8	66.8	20.0	80.1	80.1
Actuated g/C Ratio	0.07	0.15	0.15	0.12	0.20	0.15	0.06	0.45	0.45	0.13	0.53	0.53
v/c Ratio	0.46	0.58	0.22	0.70	0.27	0.38	0.39	0.31	0.22	0.72	0.26	0.05
Control Delay	73.4	63.7	13.1	72.9	50.8	11.9	77.7	29.4	5.1	68.4	19.2	4.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	73.4	63.7	13.1	72.9	50.8	11.9	77.7	29.4	5.1	68.4	19.2	4.0
LOS	E	E	B	E	D	B	E	C	A	E	B	A
Approach Delay		58.8			53.0			26.1			30.8	
Approach LOS		E			D			C			C	

Area Type: Other
Cycle Length: 150
Actuated Cycle Length: 150
Offset: 40 (27\%), Referenced to phase 2:SBT and 6:NBT, Start of Green
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.72

Intersection Signal Delay: 40.9
Intersection Capacity Utilization 56.0\%
Analysis Period (min) 15

Intersection LOS: D
ICU Level of Service B

Splits and Phases: 2: US 301 \& Bunker Hill Rd/SR 299

	4							\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$		\%	\uparrow	「	${ }^{*}$	4	F
Volume (vph)	6	36	22	232	55	75	33	641	189	150	958	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	250		145	250		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (tt)	25			25			200			200		
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.954			0.972				0.850			0.850
Flt Protected		0.995			0.969		0.950			0.950		
Satd. Flow (prot)	0	1779	0	0	1726	0	1703	1681	1568	1787	1727	1615
Flt Permitted		0.964			0.743		0.089			0.230		
Satd. Flow (perm)	0	1724	0	0	1324	0	160	1681	1568	433	1727	1615
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		16			8				100			3
Link Speed (mph)		40			50			50			50	
Link Distance (t)		1915			1875			944			1823	
Travel Time (s)		32.6			25.6			12.9			24.9	
Peak Hour Factor	0.75	0.75	0.75	0.91	0.91	0.91	0.96	0.96	0.96	0.94	0.94	0.94
Heavy Vehicles (\%)	0\%	0\%	4\%	3\%	2\%	7\%	6\%	13\%	3\%	1\%	10\%	0\%
Adj. Flow (vph)	8	48	29	255	60	82	34	668	197	160	1019	16
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	85	0	0	397	0	34	668	197	160	1019	16
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		0			0			12			12	
Link Offset(tt)		0			0			0			0	
Crosswalk Width(tt)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (tt)	20	100		20	100		20	100	20	20	100	20
Trailing Detector (tt)	0	0		0	0		0	0		0	0	0
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	0
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	20
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4			6		6	2		2

	\rangle							\uparrow	7		\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	8	8		4	4		1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	15.0	15.0	4.0	15.0	15.0
Minimum Split (s)	12.0	12.0		12.0	12.0		11.0	38.0	38.0	11.0	38.0	38.0
Total Split (s)	40.0	40.0		40.0	40.0		25.0	85.0	85.0	25.0	85.0	85.0
Total Split (\%)	26.7\%	26.7\%		26.7\%	26.7\%		16.7\%	56.7\%	56.7\%	16.7\%	56.7\%	56.7\%
Maximum Green (s)	34.0	34.0		34.0	34.0		20.0	78.0	78.0	18.0	78.0	78.0
Yellow Time (s)	4.0	4.0		4.0	4.0		3.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0			6.0		5.0	7.0	7.0	7.0	7.0	7.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	6.0	6.0	6.0	6.0	6.0
Recall Mode	None	None		None	None		None	C-Min	C-Min	Min	C-Min	C-Min
Act Efftt Green (s)		34.0			34.0		91.3	82.9	82.9	103.0	93.7	93.7
Actuated g/C Ratio		0.23			0.23		0.61	0.55	0.55	0.69	0.62	0.62
v/c Ratio		0.21			1.30		0.21	0.72	0.22	0.38	0.94	0.02
Control Delay		39.7			199.8		4.7	13.2	0.3	11.9	42.2	9.4
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		39.7			199.8		4.7	13.2	0.3	11.9	42.2	9.4
LOS		D			F		A	B	A	B	D	A
Approach Delay		39.7			199.8			10.0			37.7	
Approach LOS		D			F			B			D	
Intersection Summary												

Area Type: \quad Other	
Cycle Length: 150	

Actuated Cycle Length: 150
Offset: 32 (21\%), Referenced to phase 2:SBTL and 6:NBTL, Start of Green
Natural Cycle: 150
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.30
Intersection Signal Delay: 53.1 Intersection LOS: D
Intersection Capacity Utilization 96.6\% ICU Level of Service F
Analysis Period (min) 15
Splits and Phases: 7: US 301 \& Armstrong Corner Rd/Marl Pit Road

	\rangle						4	\uparrow	7		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		\％${ }^{*}$	个	「	${ }^{7}$	价	F	\％＊		F
Volume（vph）	54	45	16	283	121	212	16	561	182	291	797	71
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ti）	100		0	450		466	195		370	400		220
Storage Lanes	1		0	2		1	1		1	2		1
Taper Length（ft）	100			100			60			150		
Lane Utill．Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt		0.961				0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1805	1826	0	3127	1845	1538	1805	3343	1223	3433	3471	1599
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	1805	1826	0	3127	1845	1538	1805	3343	1223	3433	3471	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		10				223			194			57
Link Speed（mph）		45			25			50			50	
Link Distance（t）		1984			1173			1469			1377	
Travel Time（s）		30.1			32.0			20.0			18.8	
Peak Hour Factor	0.81	0.81	0.81	0.95	0.95	0.95	0.94	0.94	0.94	0.93	0.93	0.93
Heavy Vehicles（\％）	0\％	0\％	0\％	12\％	3\％	5\％	0\％	8\％	32\％	2\％	4\％	1\％
Adj．Flow（vph）	67	56	20	298	127	223	17	597	194	313	857	76
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	67	76	0	298	127	223	17	597	194	313	857	76
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（t）		24			24			24			24	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（tt）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector（tt）	20	100		20	100	20	20	100	20	20	100	20
Trailing Detector（tt）	0	0		0	0	0	0	0	0	0	0	0
Detector 1 Position（ft）	0	0		0	0	0	0	0	0	0	0	0
Detector 1 Size（tt）	20	6		20	6	20	20	6	20	20	6	20
Detector 1 Type	Cl＋Ex	Cl＋Ex		Cl＋Ex								
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue（s）	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay（s）	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position（ft）		94			94			94			94	
Detector 2 Size（ft）		6			6			6			6	
Detector 2 Type		Cl＋Ex			Cl＋Ex			Cl＋Ex			Cl＋Ex	
Detector 2 Channel												
Detector 2 Extend（s）		0.0			0.0			0.0			0.0	
Turn Type	Split	NA		Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	8	8		4	4		1	6		5	2	
Permitted Phases						4			6			2

	\rangle			\dagger			4	4	p	*	\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	8	8		4	4	4	1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	5.0	5.0		10.0	10.0	10.0	5.0	20.0	20.0	5.0	20.0	20.0
Minimum Split (s)	12.0	12.0		17.0	17.0	17.0	12.0	29.0	29.0	12.0	29.0	29.0
Total Split (s)	32.0	32.0		35.0	35.0	35.0	30.0	53.0	53.0	30.0	53.0	53.0
Total Split (\%)	21.3\%	21.3\%		23.3\%	23.3\%	23.3\%	20.0\%	35.3\%	35.3\%	20.0\%	35.3\%	35.3\%
Maximum Green (s)	26.0	26.0		29.0	29.0	29.0	24.0	45.0	45.0	24.0	45.0	45.0
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	5.0	5.0	4.0	5.0	5.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	3.0	3.0	2.0	3.0	3.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	8.0	8.0	6.0	8.0	8.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?												
Vehicle Extension (s)	4.0	4.0		4.0	4.0	4.0	4.0	5.0	5.0	4.0	5.0	5.0
Recall Mode	None	None		None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	11.9	11.9		22.9	22.9	22.9	8.0	69.4	69.4	19.8	89.0	89.0
Actuated g/C Ratio	0.08	0.08		0.15	0.15	0.15	0.05	0.46	0.46	0.13	0.59	0.59
v/c Ratio	0.47	0.49		0.62	0.45	0.53	0.18	0.39	0.29	0.69	0.42	0.08
Control Delay	75.7	67.4		64.9	62.0	10.8	96.2	11.8	1.9	66.2	17.6	6.0
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	75.7	67.4		64.9	62.0	10.8	96.2	11.8	1.9	66.2	17.6	6.0
LOS	E	E		E	E	B	F	B	A	E	B	A
Approach Delay		71.3			45.7			11.2			29.1	
Approach LOS		E			D			B			C	

Area Type: Other

Cycle Length: 150
Actuated Cycle Length: 150
Offset: 66 (44\%), Referenced to phase 2:SBT and 6:NBT, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.69
Intersection Signal Delay: $29.9 \quad$ Intersection LOS: C
Intersection Capacity Utilization 60.4\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 8: US 301 \& Churchtown Rd/SR 896

	7		$\dagger 1$		p	\checkmark	\dagger
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{1}$	「'	\dagger	44	7	${ }^{7}$	44
Volume (vph)	40	21	0	725	51	80	1145
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	100	250		384	445	
Storage Lanes	1	1	1		1	1	
Taper Length (ft)	25		85			85	
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Frt		0.850			0.850		
Flt Protected	0.950					0.950	
Satd. Flow (prot)	1805	1615	1900	3471	1615	1752	3471
Flt Permitted	0.950					0.315	
Satd. Flow (perm)	1805	1615	1900	3471	1615	581	3471
Right Turn on Red		Yes			Yes		
Satd. Flow (RTOR)		30			54		
Link Speed (mph)	35			55			55
Link Distance (ft)	277			1227			2058
Travel Time (s)	5.4			15.2			25.5
Peak Hour Factor	0.69	0.69	0.94	0.94	0.94	0.90	0.90
Heavy Vehicles (\%)	0\%	0\%	0\%	4\%	0\%	3\%	4\%
Adj. Flow (vph)	58	30	0	771	54	89	1272
Shared Lane Traffic (\%)							
Lane Group Flow (vph)	58	30	0	771	54	89	1272
Enter Blocked Intersection	No						
Lane Alignment	Left	Right	R NA	Left	Right	Left	Left
Median Width(ft)	12			12			12
Link Offset(ft)	0			0			0
Crosswalk Width(ft)	16			16			16
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	9		9	15	
Number of Detectors	1	1	1	2	1	1	2
Detector Template	Left	Right	Left	Thru	Right	Left	Thru
Leading Detector (ft)	20	20	20	100	20	20	100
Trailing Detector (ft)	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	20	20	6	20	20	6
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$						
Detector 1 Channel							
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)				94			94
Detector 2 Size(ft)				6			6
Detector 2 Type				$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$
Detector 2 Channel							
Detector 2 Extend (s)				0.0			0.0
Turn Type	NA	Perm	pm+pt	NA	Perm	pm+pt	NA
Protected Phases	4		1	6		5	2
Permitted Phases		4	6		6	2	2

	7		71		p	\pm	
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Detector Phase	4	4	1	6	6	5	2
Switch Phase							
Minimum Initial (s)	4.0	4.0	3.0	17.0	17.0	3.0	17.0
Minimum Split (s)	12.0	12.0	11.0	24.0	24.0	11.0	24.0
Total Split (s)	13.0	13.0	12.0	50.0	50.0	12.0	50.0
Total Split (\%)	17.3\%	17.3\%	16.0\%	66.7\%	66.7\%	16.0\%	66.7\%
Maximum Green (s)	7.0	7.0	7.0	43.0	43.0	7.0	43.0
Yellow Time (s)	4.0	4.0	3.0	5.0	5.0	3.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	5.0	7.0	7.0	5.0	7.0
Lead/Lag			Lead	Lag	Lag	Lead	Lag
Lead-Lag Optimize?							
Vehicle Extension (s)	4.0	4.0	3.0	5.0	5.0	3.0	5.0
Recall Mode	None	None	None	C-Max	C-Max	None	C-Max
Act Effct Green (s)	6.9	6.9		49.8	49.8	59.6	59.0
Actuated g/C Ratio	0.09	0.09		0.66	0.66	0.79	0.79
v/c Ratio	0.35	0.17		0.33	0.05	0.16	0.47
Control Delay	38.2	15.0		4.9	1.1	2.9	4.3
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0
Total Delay	38.2	15.0		4.9	1.1	2.9	4.3
LOS	D	B		A	A	A	A
Approach Delay	30.3			4.6			4.2
Approach LOS	C			A			A
Intersection Summary							

Area Type:
Cycle Length: $75 \quad$ Other
Actuated Cycle Length: 75
Offset: 68 (91\%), Referenced to phase 2:SBTL and 6:NBTU, Start of Green
Natural Cycle: 55
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.47	
Intersection Signal Delay: 5.4	Intersection LOS: A
Intersection Capacity Utilization 53.3%	ICU Level of Service A
Analysis Period $(\min) 15$	

Splits and Phases: 10: US 301 \& Old Summit Bridge Rd

					1	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{7}$	T	4	「	${ }^{1}$	4
Volume (vph)	108	320	559	159	517	763
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	315	0		400	250	
Storage Lanes	1	1		1	1	
Taper Length (ft)	25				50	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850		0.850		
Flt Protected	0.950				0.950	
Satd. Flow (prot)	1770	1553	1652	1568	1719	1727
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1770	1553	1652	1568	1719	1727
Right Turn on Red		Yes		No		
Satd. Flow (RTOR)		348				
Link Speed (mph)	35		45			50
Link Distance (ft)	1186		916			549
Travel Time (s)	23.1		13.9			7.5
Peak Hour Factor	0.92	0.92	0.84	0.84	0.89	0.89
Heavy Vehicles (\%)	2\%	4\%	15\%	3\%	5\%	10\%
Adj. Flow (vph)	117	348	665	189	581	857
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	117	348	665	189	581	857
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		12			12
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		16			16
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2	1	1	2
Detector Template	Left	Right	Thru	Right	Left	Thru
Leading Detector (ft)	20	20	100	20	20	100
Trailing Detector (ft)	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0
Detector 1 Size(ft)	20	20	6	20	20	6
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)			94			94
Detector 2 Size(ft)			6			6
Detector 2 Type			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$
Detector 2 Channel						
Detector 2 Extend (s)			0.0			0.0
Turn Type	NA	Free	NA	Prot	Prot	NA
Protected Phases			6	6	5	2
Permitted Phases	7	Free				

	\bigcirc		\dagger	7	\pm	
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Detector Phase	7		6	6	5	2
Switch Phase						
Minimum Initial (s)	6.0		15.0	15.0	8.0	15.0
Minimum Split (s)	16.0		30.0	30.0	15.0	30.0
Total Split (s)	30.0		68.0	68.0	52.0	120.0
Total Split (\%)	20.0\%		45.3\%	45.3\%	34.7\%	80.0\%
Maximum Green (s)	21.0		59.0	59.0	46.0	111.0
Yellow Time (s)	5.0		5.0	5.0	4.0	5.0
All-Red Time (s)	4.0		4.0	4.0	2.0	4.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	9.0		9.0	9.0	6.0	9.0
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?						
Vehicle Extension (s)	4.0		7.0	7.0	4.0	7.0
Recall Mode	None		C-Min	C-Min	None	C-Min
Act Effct Green (s)	16.0	150.0	59.0	59.0	51.0	116.0
Actuated g/C Ratio	0.11	1.00	0.39	0.39	0.34	0.77
v/c Ratio	0.62	0.22	1.02	0.31	0.99	0.64
Control Delay	77.9	0.3	77.6	24.1	73.2	11.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	77.9	0.3	77.6	24.1	73.2	11.3
LOS	E	A	E	C	E	B
Approach Delay	19.8		65.8			36.3
Approach LOS	B		E			D
Intersection Summary						

Area Type: Other

Cycle Length: 150
Actuated Cycle Length: 150
Offset: 94 (63\%), Referenced to phase 2:SBT and 6:NBT, Start of Green
Natural Cycle: 110
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.02
Intersection Signal Delay: $42.7 \quad$ Intersection LOS: D
Intersection Capacity Utilization 84.0\% ICU Level of Service E
Analysis Period (min) 15

Splits and Phases: \quad 30: US 301 \& SR 71

